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Leukocyte transmigration through the vascular endothelium is a key step in the 

immune response, and also in progression of the cardiovascular disease atherosclerosis. 

Much work has previously focused on the biological aspects of leukocyte transmigration, 

such as cytokine exposure, junctional protein organization in the endothelium, and 

signaling pathways. However, in recent years, many studies have identified links between 

the mechanical properties of the cellular microenvironment and cell behavior. This is 

relevant to the cardiovascular system in two ways: (1) it is likely that the mechanical 

properties of vasculature depend on both vessel size (large vessels versus 

microvasculature) and tissue type (soft brain versus stiffer muscle or tumor), and (2) both 

large vessels and microvasculature stiffen in atherosclerosis. For the first time, this 

dissertation provides a quantitative evaluation of the biophysical effects of vasculature 

stiffening on endothelial cell (EC) biomechanical properties, as well as leukocyte 

migration and transmigration.  
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A novel in vitro model of the vascular endothelium was created. This model 

mimics physiological conditions more closely than previous models, by taking into 

account the flexibility of the subendothelial matrix; previous models have mostly utilized 

glass or plastic substrates that are much stiffer than physiological. EC monolayers were 

formed on extracellular matrix (ECM) protein-coated hydrogels and activated with tumor 

necrosis factor-α or oxidized low density lipoprotein to induce an inflammatory response. 

We determined that three important components of the in vitro model (cell-cell adhesion, 

cytokine exposure, and subendothelial matrix stiffness) have significant effects on EC 

biomechanical properties. Next, we showed that neutrophils are mechanosensitive, as 

their migration is biphasic with substrate stiffness and depends on an interplay between 

substrate stiffness and ECM protein amount; these results suggest that any biomechanical 

changes which occur in vasculature may also affect the immune response. Finally, we 

discovered that neutrophil transmigration increases with subendothelial matrix stiffness, 

and we demonstrated that this effect is due to substrate stiffness-dependent EC contractile 

forces. These results indicate, for the first time, that the biophysical states of the 

endothelium and subendothelial matrix, which likely vary depending on size, location, 

and health of vasculature, are important regulators of the immune response.  
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1 Introduction 

Cardiovascular disease (CVD) is the leading cause of death in the world, and 

blood vessel stiffening is a hallmark of one type of CVD, atherosclerosis. However, it 

remains unknown how vascular stiffening affects the endothelial cells (ECs) lining blood 

vessels or the immune response. Importantly, leukocyte transmigration through the 

vascular endothelium is a key step in the immune response, and also in CVD progression. 

In recent years, many studies have identified links between the mechanical properties of 

the cellular microenvironment and cell behavior. In particular, it is now well established 

that changes in tissue biomechanics often lead to or are caused by disease conditions, 

such as CVD and cancer. It is clear from clinical measurements that CVD leads to an 

overall blood vessel stiffening, both in large vessels and microvasculature, though until 

recently it was not clear which components of blood vessels were affected by this 

stiffening. An important motivator for this dissertation is recent experimental evidence 

that the subendothelial matrix stiffness increases locally with CVD.  

In addition, it is likely that blood vessel stiffness varies, depending on tissue type 

and vessel size. It is known that tissue stiffness itself can vary drastically, depending on 

where it is in the body. For example, brain tissue is very soft, while muscle is much 

stiffer. It is probable that the mechanical properties of a blood vessel are influenced by 

the stiffness of the tissue in which it is located. Further evidence of this is that vasculature 

in the core of a tumor is stiffer than outside the tumor. Thus, vasculature stiffness is quite 

relevant; however, its effects on EC biomechanics and the immune response were 

unknown prior to our work. 

Previous in vitro leukocyte transmigration assays have mostly utilized glass or 
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transwell inserts as the EC substrate. However, these substrates are about 107 times stiffer 

than the actual stiffness of the subendothelial matrix in vivo and therefore are not 

physiological. In addition, no in vitro study has systematically varied the subendothelial 

matrix stiffness to determine its effect on the immune response. The overall objective of 

this dissertation was to use a novel in vitro model to quantitatively evaluate the 

biophysical effects of vascular stiffening on EC biomechanical properties, as well as 

on leukocyte migration and transmigration.  

In our novel in vitro model, EC monolayers were formed on extracellular matrix 

(ECM) protein-coated hydrogels and activated with the cytokine tumor necrosis factor-

alpha (TNF-α) to induce an inflammatory response. The stiffness of the subendothelial 

matrix was varied in order to mimic biomechanical changes that occur physiologically in 

vasculature. The design of this in vitro model is summarized in Chapter 3. We found that 

three important components of the in vitro model – cell-cell adhesion (Chapter 4), 

cytokine exposure (Chapter 5), and substrate stiffness (Chapter 7) – have significant 

effects on EC biomechanical properties. Next, we showed that neutrophils are 

mechanosensitive, as their migration in the absence of ECs is biphasic with substrate 

stiffness and depends on an interplay between substrate stiffness and ECM protein 

amount (Chapter 6); these results suggest that any biomechanical changes which occur in 

vasculature may also affect the immune response. Indeed, we discovered that neutrophil 

transmigration increases with subendothelial matrix stiffness (Chapters 7 and 8), though 

this cannot be explained by neutrophil mechanosensing; thus, we hypothesized that the 

biophysical state of the endothelium is responsible for this behavior. We found that EC 

properties such as intercellular adhesion molecule-1 expression, stiffness, cytoskeletal 
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arrangement, morphology, and cell-substrate adhesion cannot account for the dependence 

of transmigration on EC substrate stiffness.  Rather, we discovered that this effect is due 

to myosin light chain kinase-dependent EC contractile forces that promote intercellular 

gap formation. Interestingly, this behavior holds for ECs treated with TNF-α (Chapter 7) 

and oxidized low density lipoprotein (Chapter 8). An experimental research overview is 

provided in Figure 1.1. These results indicate, for the first time, that the biophysical 

states of the endothelium and subendothelial matrix, which likely vary depending on 

size, location, and health of vasculature, are important regulators of the immune 

response. 

 
 

 
 

Figure 1.1. Experimental research overview. An in vitro model for transmigration was designed 
and used to determine the effects of subendothelial matrix stiffness on endothelial cell 
biomechanics, neutrophil migration, and neutrophil transmigration.  
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2 Background† 

2.1 Leukocyte adhesion cascade 

 Polymorphonuclear neutrophils are the body’s first line of defense against 

infection, arriving at the site of acute trauma within minutes. For these immune cells to 

exit the bloodstream and travel to infected tissues outside the blood vessel, they must first 

transmigrate through the endothelium lining the inside of the blood vessel. The sequence 

of events leading up to and including transmigration is referred to as the leukocyte 

adhesion cascade (Figure 3.1). This cascade is initiated by cytokines and inflammatory 

chemoattractants that are released from stromal cells as a result of the infection and 

induce endothelial cell (EC) signaling. This leads to upregulation of EC transmembrane 

glycoproteins called selectins and molecules of the immunoglobulin superfamily such as 

intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 

(VCAM-1).  

 In the first step of the leukocyte adhesion cascade, neutrophils (one type of 

leukocyte) roll along the endothelium, an event mediated by EC expression of selectins. 

Sialyl Lewis X protein (SLeX) and P-selectin glycoprotein ligand-1 (PSGL-1) on 

neutrophils bind E-selectin and P-selectin, respectively, on the endothelium. Following 

rolling, neutrophils firmly adhere to the endothelium through binding of neutrophil 

lymphocyte function-associated antigen-1 (LFA-1) to ICAM-1 on the endothelium. Then, 

the neutrophil may migrate along the endothelium, and finally squeeze through the 

____________________ 

† This chapter was adapted from Stroka, K.M. and H. Aranda-Espinoza (2010). A biophysical view of the 
interplay between mechanical forces and signaling in leukocyte transmigration. FEBS Journal 277, 1145-
1158. Permission was obtained from the publisher to use this material in the current dissertation. 
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endothelium in a process known as transmigration (also called diapedesis or 

extravasation).  This may occur via one of two methods, the paracellular route (between 

the EC junctions) or the transcellular route (through the middle of an EC), both which 

have been observed in vivo and in vitro. They may migrate for some time just below the 

ECs, before undergoing chemotaxis and continuing through the basement membrane, 

remaining layers of the blood vessel, and interstitial tissue toward the site of infection. 

While there are important biophysical considerations at all stages of this process, 

this dissertation focuses on a quantitative understanding of transmigration. 

____________________ 
 
 

 
 
Figure 2.1. Schematic representation of the leukocyte adhesion cascade. To exit the blood 
stream, neutrophils (purple) roll along, firmly adhere to, migrate along, and finally transmigrate 
through (also called diapedesis) the endothelium. They may migrate under the endothelium for 
some time, or continue through the remaining layers of the blood vessel towards bacteria in a 
nearby tissue. Image was taken from [1]. 
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2.2 Motivation 

2.2.1 Transmigration and disease 

 Leukocyte transmigration plays a pivotal role both in the normal immune 

response and also in the development of cardiovascular disease, including atherosclerosis 

and stroke. Thus, inflammation is a normal response to foreign pathogens, but it may also 

lead to cardiovascular disease under certain conditions. For example, atherosclerosis 

initiates during increased levels of low-density lipoproteins that become oxidized by free 

radicals, come in contact with the arterial wall, and damage the endothelium. Leukocytes 

recruited by the immune system to the damaged vessel wall cannot process the oxidized 

low-density lipoproteins (oxLDL); this leads to recruitment of more leukocytes and 

begins a cycle that eventually leads to a pathological state (Figure 2.2). There are also 

numerous diseases of the immune system, such as asthma, rheumatoid arthritis, and 

psoriasis, which develop due to increased frequency of leukocyte transmigration. Cell 

transmigration is also involved in processes such as cancer cell metastasis and stem cell 

homing, and while the steps of cancer cell transmigration are believed to be similar to 

immune cells, the molecular players involved are different [2]. Further, blood/brain 

barrier (BBB) dysfunction is involved in pathological conditions, including multiple 

sclerosis and other neuroinflammatory processes or brain cancer [3, 4]. Interestingly, 

transmigration of immune cells across the BBB into the central nervous system is highly 

regulated and occurs limitedly in a process called ‘immune surveillance’ [5, 6]. However, 

in BBB dysfunction, there is an increase in immune cells or even cancer cells which cross 

the tight junctions of the BBB. 
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Figure 2.2. Schematic of a cross-section of an atherosclerotic artery. In the presence of increased 
risk factors, such as high amounts of lipids such as oxLDL, there is an increase in leukocyte 
transmigration and foam cell formation. A plaque forms beneath the endothelium, and this could 
block blood flow, leading to heart attack or stroke. Image was taken from [7]. 
 
____________________ 
 

2.2.2 Transmigration and biophysics 

As leukocytes make their way through the endothelium, forces are exerted on the 

leukocytes, ECs, and basement membrane below the ECs. At the same time, they respond 

to various mechanical forces around them, including shear stress due to blood flow and 

effects from other neighboring cells and matrix. The biophysical aspects of the 

endothelium through which the leukocytes are transmigrating, in addition to the 

biophysical aspects of the leukocytes themselves, are linked to the biochemical pathways 

which govern transmigration. However, we are only beginning to understand how 

physical forces translate into biochemical signaling pathways during leukocyte 

transmigration. In this chapter we highlight work that has related the biophysical aspects 

of leukocyte transmigration with the biochemical pathways and molecular interactions 
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that take place during this process. We discuss the assortment of physical forces 

(including estimates of their magnitude) acting on ECs from all sides. This includes shear 

stress and adherent or migrating leukocytes at the luminal surface, neighboring ECs or 

transmigrating leukocytes at cell-cell junctions, transmigrating leukocytes through the 

body of the cell, and the substrate at the basal surface of the ECs. Interestingly, forces 

acting at one surface may be propagated internally or even to other surfaces of the cell, or 

they may initiate biochemical signaling cascades within the cell, leading to a cellular 

response. Figure 2.3 indicates the assortment of biophysical forces ECs feel and possible 

signaling molecules which could act as mechanotransducers in the cell. 

 

____________________ 
 

 

Figure 2.3. Force transduction in ECs. Transduction of forces in ECs is a complex process 
involving signaling via many different molecules. This oversimplified schematic shows that at the 
luminal surface of ECs, forces due to leukocyte binding may be transmitted to the actin 
cytoskeleton via ICAM-1 receptors (A), while forces due to shear stress may be transmitted via 
activation of stretch-activated ion channels or through displacement of the glycocalyx (B). Forces 
due to junctional cell-cell contact, whether it is EC-EC contact or leukocyte-EC contact during 
transmigration, may be transmitted to the actin cytoskeleton via VE-cadherin at the cell borders 
(C). EC mechanosensing of the underlying substrate is likely completed via integrin binding at 
focal adhesions, leading to stretching of talin and activation of vinculin to reinforce the focal 
adhesion (D). The ECs respond to this interaction by forming stress fibers which contract, 
allowing for measurement of the traction forces on the EC substrate. Thus, an EC contains many 
mechanotransducing molecules on each of its surfaces that act to convert mechanical signals into 
biochemical signals within the cell. Many molecules which are known to be involved in 
mechanotransduction are also linked to the actin cytoskeleton, which is an important regulator of 
cell shape, alignment, and stiffness. Because ICAM-1 and VE-cadherin, two of the possible EC 
mechanotransducers, are also involved in leukocyte transmigration, it is likely that leukocyte 
transmigration affects force transmission within the ECs. In panel A the force acting on the EC 
(black arrow) has components both in the direction of shear stress and in the direction of pulling 
by leukocytes. In panel B the force on the EC is in the direction of shear stress. In panel C the 
force is in the direction of tension of actin filaments, maintained with the help of neighboring 
cells in contact. In panel D the force is in the direction of pulling at focal adhesions at the 
substrate. See text for more details on magnitudes of forces and specific molecules involved.  
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2.3 Endothelial cells respond to shear stress 

A single sheet of ECs line the walls of the arteries and is responsible for 

transmitting shear stress due to blood flow to the underlying layers of tissue. These 

underlying layers include the basement membrane (composed mainly of laminin and 

collagen), the media (composed of smooth muscle cells, collagen, and elastin), and the 

adventitia (the stiffer outermost layer). Shear stress on ECs leads to mechanotransduction 

(the conversion of physical forces into biochemical signals) and also 

mechanotransmission (the physical propagation of forces to the underlying layers).  In 

large arteries, mean shear stress along the wall is in the range of 20-40 dynes/cm2 and is 

generally pulsatile rather than unidirectional [8]. However, most in vitro studies which 

apply shear stress to cells use values ranging from 0 to 100 dynes/cm2, usually in 

unidirectional flow [8]. Shear stress affects EC cytoskeletal arrangement [9-11], cell 

morphology [10, 12-14], and gene expression [15-17]. While the method of EC 

mechanotransduction is still largely unknown, several molecular structures are believed 

to play a role in the mechanosensing process of converting shear stress into 

morphological changes and gene expression; these molecules include the glycocalyx, 

platelet endothelial cell adhesion molecule-1 (PECAM-1), stretch-activated ion channels, 

receptor Tyr kinases, vascular endothelial (VE)-cadherin, and vascular endothelial 

growth factor receptor (VEGFR).  

ECs develop more stress fibers and less peripheral actin as larger shear stresses 

are applied [10]. F-actin stress fibers contract between cellular focal adhesions (FAs), 

adhesion structures which exert traction stresses on the underlying substrate (Figure 2.1). 

It has been shown that there exists a 2 pN bond between an integrin and fibronectin 
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molecule, and maintenance of this bond requires talin, which binds the integrin to an 

actin filament [18]. Stretching talin activates vinculin, a FA protein, leading to 

reinforcement of the FA [19] (See Figure 2.3). Therefore, a rearrangement of the F-actin 

cytoskeleton under shear stress would be expected also to influence FAs and cellular 

traction forces. Indeed, FAs realign parallel to flow [20], and shear stress increases 

RhoGTPase activation in single cells, leading to larger traction forces [21]. In addition, 

the vimentin intermediate filament permeates the actin network and has been shown to 

propagate shear stress [22, 23]. 

Bovine aortic ECs (BAECs) migrate faster under shear stress, as opposed to static 

conditions, and this is mediated by Rho, since inhibition of the Rho-associated kinase, 

p160ROCK, results in decreased traction forces and migration speed under both static 

and shear conditions [21]. Because cell-cell contacts are important regulators of cellular 

behavior, and these experiments were performed on sub-confluent cells, further work 

needs to explore whether shear stress affects EC monolayer migration in a similar 

manner. The magnitude of traction forces and stability of FAs both depend on the 

flexibility of the underlying substrate [24, 25], and thus in recent years researchers have 

placed focus on exploring the effects of substrate rigidity on cellular behavior. These 

effects are discussed later in Section 2.7.2 for the case of ECs. 

Another study also shows involvement of small GTPases of the Rho family in EC 

response to shear stress [26]. RhoA, Rac, and Cdc42 are rapidly activated in response to 

shear stress, though the time course and effects (rounding, spreading, elongation, and 

alignment) of each molecule’s activation differs. Within five minutes of application of 

shear stress, RhoA is activated, leading to cell rounding via Rho-kinase. Then, RhoA 
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activity returns to baseline, as Rac1 and Cdc42 reach peak activation, leading to cell re-

spreading, elongation, and alignment in the direction of flow. Both Cdc42 and Rac1 are 

required for cell elongation, while Rho and Rac1 regulate cell alignment with the 

direction of flow [26].  

EC morphology in the vertical plane (specifically, cell height) is carefully 

regulated by tension in the cytoskeleton, as indicated by recent experiments which 

combine cytoskeletal drug treatments with atomic force microscopy (AFM) indentation 

measurements [27]. Depolymerization of F-actin within subconfluent cells results in 

increased cellular height. Meanwhile, disruption of microtubules lowers cell height, and 

stabilization of microtubules elevates height [27]. Thus, the cytoskeleton is an important 

structure that contributes to cellular morphology, and so it makes sense that as shear 

stress affects the cytoskeletal arrangement, then cellular morphology is also affected. 

However, it is still not clear exactly what causes the cytoskeleton to rearrange under 

shear stress, but likely it is a combination of both mechanotransduction and 

mechanotransmission effects.  

 

2.4 Mechanical properties of endothelial cells 

It is believed that the mechanical state of the endothelium is extremely important 

in maintaining vascular homeostasis, and for that reason it is crucial to understand which 

factors affect EC stiffness.  Table 2.1 summarizes the various treatments or conditions 

that affect the stiffness of the endothelium. For example, ECs stiffen under shear stress as 

a function of exposure time and magnitude of the shear stress [28-30]. Depleting 

cholesterol from untreated BAECs through methyl-β-cyclodextrin treatment increases 
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membrane stiffness, while enriching the cells with cholesterol does not affect the 

membrane stiffness [31]. Exposure to oxLDL has a similar effect in depleting cholesterol 

from the cell membrane, possibly through a disruption or redistribution of lipid rafts in 

the membrane [32]. There is evidence that treatment with oxLDL significantly increases 

membrane stiffness of human aortic ECs (HAECs), as measured by micropipette 

aspiration [32], and also of cell body stiffness of human umbilical vein ECs (HUVECs), 

as measured by AFM [33]. This increase in cell stiffness with oxLDL treatment is also 

accompanied by an increase in force generation and network formation in a three-

dimensional collagen gel [32]. In addition, there is a significant increase in stiffness of 

aortic ECs isolated from hypercholesterolemic pigs, where oxLDL levels are higher in 

the blood plasma, as compared to cells isolated from healthy pigs [32]. These results 

suggest that risk factors for atherosclerosis and stroke, such as high cholesterol, lead not 

only to biological malfunction, but are perhaps accompanied by biophysical changes in 

the endothelium.  

In addition to shear stress, cholesterol, and oxLDL, ECs are also exposed to 

varying levels of sodium in the bloodstream; this is another factor that regulates vascular 

tone. ECs significantly stiffen in a high sodium environment in the presence of 

aldosterone, which is a hormone that increases the reabsorption of sodium and is 

physiologically present in the bloodstream. Increases in cell stiffness range from about 

10% to 50%, depending on extracellular sodium concentration (range of 135-160 mM) 

[34]. In addition, nitric oxide production is downregulated by aldosterone-exposed cells 

in a high sodium medium [34]. Meanwhile, increases in potassium soften ECs and boost 

nitric oxide production, though this effect is abrogated in the presence of high sodium 
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[35]. Thus, hyperpolarization or depolarization of the cell leads to changes in cell 

stiffness. Another recent study simultaneously measured the mechanical stiffness and 

electrical membrane potential of a vascular cell line derived from BAECs and correlated 

slow cell depolarizations with increases in cell membrane stiffness [36]. 

The inflammatory response also contributes to EC stiffness. For example, 

exposure of ECs to the cytokine tumor necrosis factor-α (TNF-α) leads to cell softening 

[37]. This effect is further explored in this dissertation (Chapters 5 and 7). Interestingly, 

neutrophil adherence to ECs also increases EC stiffness as measured by magnetic 

twisting cytometry [38, 39]. Meanwhile, monocyte adherence to ECs decreases EC 

stiffness, as measured by AFM, and at the same time also reduces the adhesiveness of 

ECs to the substrate, indicated by a decrease in electric cell-substrate impedance [40]. 

This suggests that leukocyte interactions with the endothelium affect 

mechanotransmission events, and that these effects are cell type-dependent.  

____________________ 

 

Treatment Effect on EC stiffness Reference 
Shear stress increase 28, 29, 30 
Cholesterol depletion increase 31 
Cholesterol enrichment no change 31 
oxidized LDL increase 32, 33 
Sodium increase 34 
Potassium decrease 35 
TNF-α decrease 37 
Neutrophil adhesion increase 38, 39 
Monocyte adhesion decrease 40 

 
Table 2.1. Effects of various physiological treatments or conditions on the mechanical properties 
(stiffness) of the endothelium. 
 



www.manaraa.com

  15 

The effects that leukocytes have on the endothelium indicate that stiffness may 

vary locally. Indeed, it has been shown that ECs have a heterogeneous mechanical 

surface. For example, AFM experiments have revealed that the Young’s modulus of 

HUVECs ranges from 1.4 kPa near the edge of the cell to 6.8 kPa over the nucleus of the 

cell [41], while in bovine pulmonary aortic ECs (BPAECs) the Young’s modulus ranges 

from 0.2 to 2 kPa [42]. In contrast, Sato et al. have found that BAECs are stiffer near the 

edge of the cell than at the nucleus, as measured by AFM [28]. The discrepancies of 

stiffness versus cell location in these studies may be due to differences in loading forces 

and indentation depths used when probing with the AFM cantilever [41], since cellular 

structures such as the cytoskeleton and nucleus are positioned at different heights within 

the cell. Using AFM, Engler et al. probed the smooth muscle cell-containing media layer 

of sectioned carotid arteries from six-month-old pigs and measured the Young’s modulus 

to be in the range 5-8 kPa [43], which is of similar value to the single cultured cells 

discussed above. Therefore, it is obvious that the mechanical properties of ECs are very 

heterogeneous and location-dependent under normal conditions; but they are also 

influenced by biophysical factors such as shear stress, cholesterol distribution within the 

plasma membrane, exposure to increased sodium, cytokine exposure, and EC-leukocyte 

adhesion, all of which have been shown to be relevant in the onset and progression of 

disease. Further, in Section 3.1, we review the relationship between CVD and 

subendothelial matrix stiffening; this dissertation shows that subendothelial matrix 

stiffening also affects the mechanical properties of the vascular endothelium. 

It is also possible to use AFM, in combination with total internal reflection 

fluorescence microscopy (TIRFM), to study the mechanotransmission of applied local 
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forces at the apical surface of an adherent cell to the basal surface of the cell. Using this 

technique, Mathur et al. observed that exerting a local force of 0.3-0.5 nN by an AFM 

probe over the nucleus of a HUVEC results in a global rearrangement of focal contacts at 

the substrate after the force is removed, including a significant increase in FA area [44]. 

Applying the same force over the edge of the cell does not result in any significant 

changes in FA contact area after the force is removed, suggesting that the nucleus is an 

important link in force transmission between the cytoskeleton and FAs [44]. Further, 

application of local force via an AFM probe also leads to mechanotransduction, as 

evidenced by increased intracellular calcium through activation of stretch-activated ion 

channels [45].  

 

2.5 Endothelial cell-cell contacts as mechanosensors 

 Much biophysical characterization of cells has been done using single cells, where 

cell-substrate interactions are most important. However, in the case of the endothelium, 

the cells are packed in at high density, forming a monolayer where cell-cell interactions 

are as important, if not more important, than cell-substrate interactions. As discussed 

above, EC monolayers undergo global remodeling in response to mechanical stimuli such 

as shear stress; recent evidence also suggests that EC monolayers respond to local 

mechanical forces [46]. When a glass needle is used to apply local stretch to selective 

ECs and EC junctions, the ECs respond by aligning and elongating parallel to the 

direction of stretch, and this effect is accompanied by a reorganization of stress fibers. At 

the selective junctions where stretch is applied, Src homology-2-containing tyrosine 
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phosphatase-2 is recruited [46], and this molecule is known to bind to PECAM-1 [47]. 

These results suggest that cell-cell junctions both sense and transmit local forces. 

 Cell-cell contact has been shown to both inhibit and stimulate cell proliferation, in 

different experimental studies using different methods to regulate cell-cell contact. For 

example, a recent study by Gray et al. [48] has demonstrated that EC proliferation is 

biphasic with degree of cell-cell contact. In this study, cell-cell contact is controlled by 

cell micropatterning, so that a distinct number of cells can adhere in specific 

configurations. Cells with no neighbors and cells with more than three neighbors 

proliferate faster than cells with two or three neighbors. This relationship is mediated by 

RhoA, since expression of dominant-negative RhoA blocks the increase in proliferation. 

Higher proliferation can be simulated in single cells with no neighbors through contact 

with a VE-cadherin bead [48]. These results point to VE-cadherin as an important 

junctional signaling molecule capable of transmitting forces through cell-cell contacts 

(Figure 2.1). In this dissertation, Chapter 4 shows that cell-cell adhesion plays an 

important role in determining cellular mechanical properties in the endothelium. 

 

2.6 Activation of the inflammatory response  

Whether in vivo or in vitro, the immune response requires activation of the 

endothelium in order to allow leukocytes to adhere to and transmigrate through the EC 

barrier. Several known cytokines are known to induce the inflammatory response, 

including TNF-α and interleukin-1 (IL-1). The pathways activated by these cytokines 

result in drastic changes such as upregulation of adhesion molecule expression as well as 

junctional molecule reorganization, both which promote leukocyte transmigration. 
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TNF-α is produced mainly by innate immune cells, such as macrophages, as a 

response to infection or inflammation in the body. As a TNF-α molecule binds to the 

TNF receptor-1 on the extracellular side of the endothelial cell, the cytosolic tails of the 

receptors rearrange. A number of intracellular signaling proteins are recruited, resulting 

in the possible activation of three different pathways. These include NF-κB activation, a 

mitogen-activated protein kinase cascade, and proteolysis leading to apoptosis. 

Activation of the NF-κB pathway leads to recruitment and activation of IκB kinase kinase 

(IKKK); the phosphorylation and activation of IκB kinase (IKK) by IKKK; the 

phosphorylation of IκB; and the degradation of IκB, which releases the NF-κB. NF-κB 

then localizes to the nucleus, where it initiates transcription of many genes which 

contribute to the inflammatory response [49].  

Following TNF-α stimulation, expression of both ICAM-1 and VCAM-1 are 

upregulated, while PECAM-1 (also known as CD31) expression is decreased in cultured 

HUVECs [50]. ICAM-1 and VCAM-1 are needed for leukocyte firm adhesion and 

transmigration through the ECs. In addition, activation of the NF-κB pathway results in a 

reorganization of EC F-actin cytoskeleton and junctional molecules, such as VE-cadherin 

[51, 52], as well as changes in cell shape [53] and a decrease in cell stiffness [37]. In 

particular, ECs activated by TNF-α become more elongated and arrange into whorls [53], 

while actin filaments thicken, leading to actomyosin-mediated cell retraction and 

intercellular gap formation [52]. Thus, even before leukocytes enter the picture, the ECs 

have undergone significant changes in response to activation of the inflammatory 

response. Although the response is controlled by signaling pathways, some of the 

pathways are inside-out signals that might occur through regulation of the interaction of 
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the cell with the extracellular matrix and through the response to shear stress. Thus, it is 

important to recognize the influence of these mechanical forces, not only as possible 

sources of outside-in signaling, but also as a form of feedback for the reorganization of 

the endothelium. In this dissertation, TNF-α is used to induce an inflammatory response 

in ECs, and therefore Chapters 5 and 7 explore how TNF-α regulates EC shape, 

cytoskeletal arrangement, mechanical properties, and migration. 

 

2.7 Mechanosensitivity 

2.7.1 Mechanical properties of the cellular microenvironment 

In recent years, much attention has focused on the effects of substrate stiffness on 

cell adhesion and migration. Many cell types, including ECs [54-57], smooth muscle 

cells [58-60], fibroblasts [25, 56, 61], neurons [62, 63], stem cells [64], and macrophages 

[65] display behavior which changes as a function of underlying stiffness in vitro. While 

these cells are able to sense substrate stiffness, the mechanical properties of the cells also 

depend on many factors. These in vitro studies are quite relevant, because it is known that 

pathological conditions such as cancer and atherosclerosis are associated with changes in 

tissue and cell stiffness [66-68]. Effects of tissue stiffness are also important in the field 

of tissue engineering, where constructs are made to replace damaged or diseased tissues 

in the body. Obviously, these biological substitutes are most effective if they mimic the 

actual in vivo biochemical and mechanical conditions, but most experiments in the past 

have been done on glass, a very stiff substrate. Recently, however, polydimethylsiloxane 

with fibronectin micropatterning in FA-sized circular islands has been recognized as a 

substrate capable of achieving rapid EC confluence, cell densities similar to those in vivo, 
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and FA formation [69]. Furthermore, rigidity sensing is likely accomplished through 

integrin interactions with the extracellular matrix. It has been shown that substrate 

stiffness directs the mechanical activation of the α5β1 integrin binding to fibronectin 

through myosin-II generated cytoskeletal force, leading to internal signaling via 

phosphorylation of focal adhesion kinase [70]. Unknown, however, is how the leukocyte 

adhesion cascade acts in response to any engineered endothelium.  

 Because there exists a complex interplay between the biochemical and mechanical 

conditions in the body, an understanding first must be made of how these conditions 

individually affect cells, and then how they act in concert. In the following sections we 

will review what is known about the effects of environmental stiffness on vascular ECs, 

as well as on immune cells. Substrate stiffness of ECs is relevant because changes of 

stiffness of basement membrane or underlying layers (“subendothelial matrix”) may 

affect EC structure, organization, and gene expression. In addition, it may affect EC 

stiffness, and because immune cells migrate on and through ECs, it is important also to 

understand how immune cells respond to changes in substrate stiffness. In this 

dissertation, manipulation of the subendothelial matrix stiffness is a key component of 

our in vitro model, and we use it to understand how vasculature stiffening during CVD 

affects both the endothelium and the immune response. 

 

2.7.2 Vascular ECs respond to substrate stiffness 

Effects of environmental mechanical properties on EC behavior have been studied 

in both two dimensions (2D) and three dimensions (3D). Most of the previous work on 

2D substrates has focused on individual cells or cells in networks. Meanwhile, this 
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dissertation mostly focuses on monolayers of ECs. Single BAECs show increased 

spreading areas and spreading rates on stiffer polyacrylamide gels in the range of 

Young’s modulus 6 Pa to 165,000 Pa [56], while BAEC network assembly (before 

monolayer formation) depends on a balance between substrate compliance and 

extracellular matrix density [54]. In general, HUVEC morphology switches from a tube-

like network to a monolayer with increasing substrate stiffness, both on polyacrylamide 

gels and on Matrigel [71]. It is also well-established that cellular cytoskeletal 

organization depends on the stiffness of the underlying substrate and controls the shape 

of the cell. For example, severing multiple F-actin stress fibers in bovine capillary ECs 

(BCECs) on stiff surfaces (glass) using a laser nanoscissor results in very little change in 

cellular shape. However, severing only one stress fiber in BCECs on compliant substrates 

(Young’s modulus ~3,750 Pa) results in cytoskeletal remodeling, and, consequently, 

dramatic changes in cellular shape [72]. Further, HUVECs on soft Matrigel surfaces 

contain less actin and vinculin in comparison with the same cells on rigid Matrigel 

substrates [71]. 

Because the F-actin network contributes to the maintenance of prestress in the cell 

by regulating cellular tension, it would also be expected that the stiffness of the ECs 

depends on substrate stiffness. Indeed, single BAECs are two-fold more compliant on 

polyacrylamide gels of Young’s modulus 1,700 Pa as compared with BAECs on 9,000 Pa 

substrates [73]. These results are consistent with the discovery that fibroblasts mimic the 

stiffness of their substrate, up to a threshold value, and that this response is dependent 

upon the organization of the F-actin cytoskeleton, where cells on stiff surfaces exerting 

larger traction forces have a more stretched and organized actin cytoskeleton than on a 
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softer surface [74, 75]. Recent work has also suggested that BAECs can communicate 

with each other through the compliance of their substrate [57]. Pairs of cells migrate less 

than single cells on polyacrylamide gels below 5,500 Pa, indicating that the traction 

forces exerted by one cell can be felt by another cell, resulting in altered behavior [57]. 

This behavior of ECs may be altered in a nonlinear strain-stiffening fibrin gel system, 

where recent studies have shown that fibroblasts and human mesenchymal stem cells are 

influenced by each other even when hundreds of microns away from each other [76]. 

ECs may also be capable of sensing the mechanical properties of their 

environment in 3D culture, as suggested by experiments utilizing collagen gels. This 

work is very promising for steps towards understanding the processes of vasculogenesis 

(formation of new blood vessels) and angiogenesis (formation of vascular trees), 

especially since one of the current hurdles in the field of tissue engineering is creating 

vascularized tissues. HUVECs spread more, have larger lumens, and exhibit less 

branching when suspended in stiffer collagen gels [55]. Similarly, bovine pulmonary 

microvascular ECs (BPMECs) cultured in flexible collagen gels form dense, thin 

networks and have small, intracellular vacuoles with few actin filaments localized along 

the cell membrane. Meanwhile, BPMECs in rigid collagen gels form thicker and deeper 

networks surrounded by intense actin filaments and with large lumens [77]. However, 

one must be careful in interpreting experimental results involving cells on or in collagen 

gels, since the strain exerted by cells on the collagen gel can modify the collagen fibers at 

the microscopic level [78], and cells can enzymatically cut collagen fibers. Vinculin 

expression is very low in BPMECs in soft gels, while large clumps of vinculin are seen in 

protruding regions at the tips of the branching networks in rigid gels [77]. Because EC 
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morphology, stiffness, organization, and gene expression are all regulated by substrate 

stiffness, manipulation of substrate mechanics is a possible mechanism to direct cell 

migration and wound repair. In this dissertation, subendothelial matrix stiffness is shown 

to influence neutrophil transmigration through EC monolayers via myosin light chain 

kinase-dependent EC contraction, in response to both TNF-α (Chapter 7) and oxLDL 

(Chapter 8). 

 

2.7.3 Leukocytes respond to substrate stiffness 

 Interestingly, recent studies have shown that immune cell behavior also depends 

on substrate stiffness, though the rigidity-sensing mechanism is likely very different from 

endothelial cells, fibroblasts, and other tissue cells. Immune cells are highly motile cells 

which must move across and through ECs at high speeds in order to carry out normal 

physiological function. Our work (Chapter 6; published as [79]) was the first paper to 

show that neutrophils are sensitive to substrate stiffness. Since then, two other groups 

have confirmed these findings [80, 81]. Both neutrophils [79, 81] and alveolar 

macrophages [65] display increased spreading, from rounded to flattened morphology, 

with increasing substrate stiffness, though this spreading occurs without generation of F-

actin stress fibers [65] or formation of FAs, which is a remarkable difference from tissue 

cells. 

It has also been shown that neutrophil force generation during transmigration is 

dependent on substrate rigidity, with larger forces being exerted on micropillars with 

larger spring constants (39±6 nN versus 14±4 nN) [82]. Prior to our work (Chapter 7; 

published as [83]), this was the only study that took into account the flexibility of the EC 
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substrate while analyzing neutrophil transmigration. However, the use of the micropillar 

system for this application is questionable, since the micropillars force ECs to adhere 

only in specific locations, leading to possible differences in traction force exertion. 

Finally, alveolar macrophage stiffness is lower on softer substrates than on stiffer ones, 

though cytochalasin D treatment has negligible effects, suggesting that, unlike many 

tissue cells, alveolar macrophage stiffness is not regulated through tension of the F-actin 

cytoskeletal network [65]. 

 

2.8 Mechanotransduction during leukocyte transmigration 

Transmigration is often considered the least-studied step of the leukocyte 

adhesion cascade.  Some work has been completed on the role of adhesion molecules 

such as ICAM-1 [84-86], VCAM-1, PECAM-1 [87-89], and CD99 [90, 91] on leukocyte 

transmigration. However, while some of the important proteins are identified, there is still 

a lack of understanding of the overall process, especially its mechanics and how forces 

are propagated as leukocytes penetrate through the ECs. Rabodzey et al. [82] identified 

that the forces which ECs exert on a microfabricated pillar surface during transmigration 

increase when the rigidity of the pillars is increased, providing evidence that 

transmigration is a mechanosensitive process; further, ECs exert three times greater 

forces during leukocyte transmigration, in comparison with the case where leukocytes 

adhere but do not transmigrate [82]. Similar results were obtained for monocytes 

transmigrating through ECs using a micropillar system [92]. However, because the 

micropillar system likely affects EC adhesion and traction forces by constraining the ECs 
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to specific FA sites, much more work is needed to investigate exactly how leukocyte 

transmigration affects force propagation in ECs.  

 

2.9 Mechanisms of transmigration 

2.9.1 Paracellular transmigration   

 One method by which cells transmigrate through ECs is in a paracellular fashion, 

or by squeezing through the endothelial cell-cell junctions. Several junctional adhesion 

receptors of ECs are known to participate in leukocyte transmigration; these molecules 

include junction adhesion molecules (JAMs), PECAM-1, VE-cadherin, and endothelial 

cell-selective adhesion molecule. Non-junctional adhesion receptors involved in 

transmigration include ICAM-1, ICAM-2, and CD99. For a more complete understanding 

of these molecules see a review by Vestweber [93]. VE-cadherin is largely responsible 

for maintaining endothelial cell-cell contact in monolayers. Individual VE-cadherin to 

VE-cadherin bonds have been found to have an unbinding force of 35-55 pN, as 

measured by single molecule AFM [94]. VE-cadherin forms a molecular complex with 

alpha-, beta-, gamma-, and p120-catenins (p120). VE-cadherin is also known to link to 

the actin cytoskeleton of ECs, though the mechanism of this linkage has been under much 

debate [95]. This controversy has spurred since the discovery that alpha-catenin cannot 

bind simultaneously to beta-catenin and actin [96]. A recent study has suggested that 

epithelial protein lost in neoplasm (EPLIN; also known as Lima-1) links actin and alpha-

catenin, and then alpha-catenin is simultaneously linked to beta-catenin and cadherin 

[97]. However, while this is true for epithelial cells, it is unknown whether a similar 

protein links VE-cadherin to actin in ECs. Somehow, though, VE-cadherin associates 
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with the actin cytoskeleton in ECs, maintaining tension within the cells via cell-cell 

contact.  

 Due to VE-cadherin’s role in cell-cell contact, it obviously provides a physical 

barrier to leukocyte penetration at the junction. Thus, VE-cadherin rearranges away from 

the cell borders to form short-lived gaps in the junctions during leukocyte transmigration 

[98]. These gaps are necessary for transmigration to occur [99] and are induced by 

ICAM-1/LFA-1 interaction [100]. Because VE-cadherin associates with the F-actin 

cytoskeleton, a rearrangement of VE-cadherin during leukocyte transmigration would 

also be expected to affect the F-actin arrangement within the ECs, leading to changes in 

cellular prestress (Figure 2.3). The expression of VE-cadherin is mediated by p120, 

suggesting that p120 is an important intracellular mediator of VE-cadherin gap formation 

[99].  

 Also maintaining endothelial cell-cell junctions are homophilic interactions of 

JAM-A, and thus these molecules also create a physical barrier for leukocytes. Recently 

it has been shown that LFA-1 (on leukocytes) binding to JAM-A (at EC junctions) 

destabilizes JAM-A homophilic interactions [101]. AFM measurements indicate that 

interaction of JAM-A with LFA-1 is stronger than JAM-A hemophilic interactions; the 

unbinding force of JAM-A to JAM-A interactions increases from about 40 to 300 pN 

with increasing loading rate, while the unbinding force of JAM-A to LFA-1 increases 

from about 150 to 450 pN with similar range of loading rate [101]. Dufour et al. have 

also recently shown that CD99 is necessary for leukocyte transmigration in vivo [90] and 

in vitro [91]. Blocking CD99 on both leukocytes and on ECs inhibits transmigration, 
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suggesting that it is a homophilic interaction of CD99 which mediates transmigration 

[90]. 

 

2.9.2 Transcellular transmigration 

 In addition to leukocytes crossing through endothelial cell-cell junctions, they 

also may take a transcellular route through the body of the cell. See Carman and Springer 

[102] for a review on transcellular migration of cells. While both transmigration paths are 

available to leukocytes, it remains to be determined which is most energetically 

favorable. 

 It is believed that leukocyte transmigration via the transcellular route is initiated 

with the formation of a cup-like “docking structure” in which the adhesion proteins 

ICAM-1 and VCAM-1 localize in response to a leukocyte present on the EC surface. 

This docking structure, which may be 8-12 µm wide and 1 µm deep [103], forms as 

endothelial pseudopods embrace the leukocyte, engaging ICAM-1 on the EC surface with 

lymphocyte function-associated antigen-1 (LFA-1) on the leukocyte surface [104], 

leading to activation of RhoG downstream [105]. The interaction force between ICAM-1 

and LFA-1 has been measured as 100 pN, with a 50 ms contact duration [106]. One study 

has shown that ICAM-1 and VCAM-1 are recruited independent of ligand engagement, 

actin cytoskeleton engagement, and heterodimer formation; instead, they are included 

within specialized preformed tetraspanin-enriched microdomains [107]. On the other 

hand, there is also evidence that ICAM-1 engagement upon leukocyte adhesion leads to 

EC cytoskeletal remodeling due to tyrosine phosphorylation of cortactin, linking ICAM-1 

to the actin cytoskeleton and allowing ICAM-1 to form clusters which facilitates 
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transmigration [108] (Figure 2.1).   Transmission electron microscopy images show that 

lymphocytes concurrently send protrusive podosomes into the ECs, and this occurs both 

in vivo and in vitro, possibly to probe the EC surface in order to find regions of low 

resistance [109]. Thus, initiation of leukocyte transmigration via the transcellular route 

involves active involvement from both the ECs and the leukocytes, but the molecular 

mechanisms are still not well understood.   

 

2.10 Transmigration during atherogenesis: Role of oxLDL 

The dynamics of leukocyte transmigration in atherogenesis should also be 

considered. That is, what is the mechanism for increased leukocyte extravasation through 

the endothelium, leading to formation of raised plaques under the endothelium during 

CVD? Treatments of HUVECs with oxLDL in vitro have recently been shown to 

promote monocyte invasion of the endothelium, presumably because oxLDL upregulates 

PECAM-1, leading to enhanced hemophilic interactions with monocyte PECAM-1, and 

downregulates VE-cadherin, leading to disrupted junctions and therefore increased 

endothelial permeability [110]. Monocyte adhesion to the apical surface of ECs and 

monocyte complete transmigration below the endothelium are not affected by oxLDL 

treatment [110], suggesting that initiation of transmigration is the critical step at which 

oxLDL level is important. In Chapter 8 of this dissertation, we show oxLDL also 

promotes neutrophil transmigration, an event which is relevant in microvasculature, 

through enhanced EC ICAM-1 expression and contractility. 
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2.11 Cytoskeletal involvement during transmigration 

 Leukocyte transmigration is facilitated by increased EC permeability. This can be 

accomplished through activation of the NF-κB pathway via stimulation with TNF-α, as 

discussed above. In addition, EC permeability can also be increased by treatments such as 

histamine, thrombin, vascular endothelial growth factor-A, or hydrogen peroxide. These 

agents are believed to increase tyrosine phosphorylation in the cadherin-catenin complex 

[93]. Recent work suggests that the spatial organization of the cytoskeleton, specifically 

F-actin, controls the permeability of ECs in vitro [111]. For example, treating ECs with 

junction-disrupting agents induces stress fiber formation, while treating ECs with 

junction-tightening agents (such as oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-

phosphocholine, hepatocyte growth factor, and iloprost) enhances the peripheral actin 

cytoskeleton [111]. These treatments will also facilitate or hinder leukocyte 

transmigration, respectively, and therefore the spatial organization of the F-actin network 

as a physical barrier is a crucial regulator of leukocyte trafficking.  

 When neutrophils are removed from the endothelium during transmigration using 

AFM, they leave behind footprints 8-12 µm wide and 1 µm deep [103]. This work claims 

that these footprints are formed without net depolymerization of F-actin, since ECs do not 

soften at the site of adhesion [103]. However, other work has shown that both neutrophils 

and ECs stiffen during neutrophil-EC adhesion, and this process is cytoskeleton-

dependent [38, 39]. Depolymerization of actin has also been recently observed during 

transmigration [112]. Obviously, the role of the EC cytoskeleton in leukocyte 

transmigration is still not understood, and further experiments are necessary to determine 

how it may transmit forces during leukocyte transmigration. In this dissertation, Section 



www.manaraa.com

  30 

10.1 provides an introduction to methods that can be used to more fully understand the 

role of the EC cytoskeleton during transmigration. 

 

2.12 Conclusions 

 The mechanical state of the endothelium is influenced by many external factors, 

both chemical and mechanical. Because the mechanical state of the endothelium is likely 

an important regulator of vascular homeostasis and leukocyte transmigration, many 

biophysical tools, such as AFM, magnetic tweezers, traction force microscopy, and 

immunofluorescence are very relevant and useful. Leukocyte transmigration through 

endothelial cells is a complex process that is involved both in the healthy immune 

response and also in the development of disease. It is evident that the process involves a 

transmission of physical forces as the leukocytes pass through the endothelium. The 

propagation of these forces through ECs is likely affected by interactions with 

neighboring ECs, interactions with the basement membrane beneath the ECs, and shear 

stress. How these forces, individually or together, translate into biochemical signaling 

pathways is only beginning to be understood. In the future, it will become increasingly 

necessary to develop similar biophysical tools as those currently used in vitro in this 

dissertation, for more in vivo experiments, so that we can understand how force 

transmission in an actual blood vessel differs or is similar to that in an engineered 

endothelium. A prerequisite step, however, is developing a more complete understanding 

of how blood vessel biomechanics affects the immune response using closer-to-

physiological in vitro models, as in this dissertation. 
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3 Overview of the in vitro Model for Transmigration 

 The purpose of this chapter is to provide a general overview of the in vitro model 

for transmigration that has been designed in this dissertation. Each component of the 

model is introduced and rationalized. Meanwhile, the experimental details of the model 

will be discussed in the Materials and Methods sections of the relevant chapters. 

 

3.1 Physiological stiffness of polyacrylamide hydrogel substrates 

 Thin polyacrylamide gels are currently used extensively in in vitro experiments to 

evaluate the effects of substrate stiffness on cellular behaviors such as morphology, 

cytoskeletal arrangement, migration, and differentiation. Major advantages to utilizing 

these gels include the ability to (1) tailor the stiffness easily by changing the 

concentration of the cross-linker, (2) create gels in the kilopascal range of stiffness, 

which is physiologically relevant to the cardiovascular system, (3) control the stiffness of 

the gels independent of the extracellular matrix protein amount, and (4) use microscopy 

to visualize cells through the gels due to their optical transparence. 

 An important consideration is the range of gel stiffness to be used in the in vitro 

model. In this work we varied the stiffness of the EC substrate from 0.42 to 280 kPa in 

order to mimic changes which occur during cardiovascular disease [113] or cancer [114], 

and possibly throughout the body depending on tissue location. Clinically, pulse wave 

velocity measurements have been used to determine that diseased arteries are consistently 

stiffer in patients with atherosclerosis or hypertension versus healthy patients [115, 116]. 

Further, in vivo AFM measurements of aortic vessels in living rats show a significant 

increase in blood vessel stiffness with vasodilation, and softening with vasoconstriction 
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[117]. It is believed that the microcirculation also undergoes stiffening during 

hypertension, as pulse wave velocity waves reflect deep into microvasculature [118]. 

Thus, it is clear that cardiovascular disease leads to blood vessel stiffening, though 

further work has been necessary to demonstrate that the subendothelial matrix 

specifically varies in stiffness with disease. 

AFM has been used to quantify ex vivo blood vessel mechanical properties.  For 

example, physiological porcine aorta stiffness is 5-8 kPa [43]. Further, the arteries of 

ApoE-null mice, a model of atherosclerosis, are stiffer than wild-type mice; healthy 

arteries measure 5kPa, while ApoE knockout vessels measure 28 kPa [119]. These 

measurements were made after the endothelium was scraped away and thus represent the 

stiffness of the EC substrate in an actual artery. Interestingly, the subendothelial and 

endothelial layers of bovine carotid arteries are similar in stiffness, around 2.5 kPa [120]. 

In another study, injury to the femoral artery increased vessel stiffness from 3 kPa to 10 

kPa, indicating that injury can also affect stiffness of the vasculature [121]. In our model, 

stiffnesses in the range 3-5 kPa represent the healthy physiological stiffness of the 

subendothelial matrix, while stiffnesses in the range 13-280 kPa represent diseased 

conditions (Figure 3.1). 

It is also possible that the stiffness of blood vessels, specifically the 

microvasculature where neutrophils most often transmigrate, depends on the mechanical 

properties of the surrounding tissue. For example, the stiffness of brain (0.3-0.5 kPa) is 

much less than that of collagenous bone (~100 kPa) [64, 122]. Further, vasculature within 

the core of a tumor is stiffer than surrounding vasculature [114]. Thus, “healthy stiffness” 

likely depends on location within the body, as well as size of vessel, and our substrates 
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span a large range of physiological stiffnesses, from 0.42 kPa to 280 kPa. Our lower 

range of subendothelial matrix stiffness (0.42-0.87 kPa; Figure 3.1) could be relevant in 

brain microvasculature where the blood vessel microenvironment is very soft (0.3-0.5 

kPa as discussed above) or in development of future cardiovascular disease-targeting 

drugs which return elasticity to blood vessels; it would be important to understand how 

these potential drugs affect EC biomechanics and the immune response. 

____________________ 

 

 

Figure 3.1. Summary of polyacrylamide gel compositions used for leukocyte migration and 
transmigration assays. Compositions are shown on the x-axis in percentage acrylamide (acryl) 
and bix acrylamide (bis). The Young’s modulus of each gel was measured using either dynamic 
mechanical analysis or atomic force microscopy. Bars indicate the averages of at least 3 different 
samples; the average value is shown at the top of each bar. Also shown is the physiological 
relevance of each stiffness range. 
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3.2 Extracellular matrix protein coating 

 Without extracellular matrix (ECM) protein, the polyacrylamide gels are not 

suitable for long-term cell attachment. Therefore, the gels were coated with the ECM 

protein fibronectin using a photactivation procedure to covalently bind the fibronectin to 

the gels. Cellular integrins interact with the RGD binding site on fibronectin, resulting in 

strong cellular attachment on all stiffnesses. The amount of surface-bound fibronectin on 

the gels is independent of gel stiffness, as we and others have characterized.  ECs also 

polymerize their own fibronectin matrix during growth, which likely enhances their 

ability to bind to the gel. 

 

3.3 Endothelial cells 

 For transmigration experiments, human umbilical vein ECs (HUVECs; a model of 

large vessels) and human brain microvascular ECs (HBMECs; a model of 

microvasculature) were purchased and used to model the vascular endothelium. HUVECs 

or HBMECs were plated onto fibronectin-coated polyacrylamide gels, attached within an 

hour, and subsequently formed a monolayer within 2 days (Figure 3.2, top). When plated 

at low density (less than 2x105 cells per 22x22mm substrate), ECs formed monolayers 

faster on stiffer substrates. When plated at high density (4x105 cells), however, all 

substrates supported monolayer formation with similar cell densities within 2 days. After 

complete monolayers formed, the endothelium was treated for 24 hours with the cytokine 

TNF-α (Chapter 7) or with oxLDL (Chapter 8) to induce an inflammatory response 

(Figure 3.2, bottom). In both cases, ICAM-1 expression was significantly increased after 

these treatments, allowing for leukocyte adhesion, migration, and transmigration. 
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Subsequent chapters will characterize the effects of cell-cell adhesion (Chapter 4), TNF-α 

(Chapters 5 and 7) or oxLDL (Chapter 8) treatment, and substrate stiffness (Chapters 7 

and 8) on the morphological, cytoskeletal, and biomechanical properties of the ECs.  

 

 

____________________ 

 

 

 

 
 
Figure 3.2. Phase contrast microscopy images of control and TNF-α-activated human umbilical 
vein endothelial cells (HUVECs) on fibronectin-coated polyacrylamide gels of varying stiffness. 
Stiffnesses are indicated at the top of each column of images. Scale bar for 0.87 kPa control is 50 
µm and applies to all images. 
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3.4 Leukocytes 

 Polymorphonuclear neutrophils are the final component of the in vitro model. 

These white blood cells are the body’s first line of defense against an infection and 

primarily transmigrate in the microvasculature, which, as described above, has also been 

shown to stiffen in CVD. Shear stresses in the microvasculature are significantly lower 

than those in larger vessels, and thus this work approximates physiological conditions by 

focusing on static conditions. Neutrophils were freshly isolated from human blood and 

subsequently plated on the TNF-α- or oxLDL-treated endothelium. Lymphocyte 

function-associated antigen-1 (LFA-1) on the surface of the neutrophils binds to ICAM-1 

(increased expression due to TNF-α or oxLDL) on the surface of ECs, which allows for 

firm neutrophil adhesion to, migration along, and transmigration through the 

endothelium. Figure 3.3 displays a schematic of the in vitro assay for transmigration used 

in Chapters 7 and 8 of this dissertation. 

 

____________________ 

 

 

 
Figure 3.3. Schematic that summarizes the in vitro model for leukocyte transmigration through 
the vascular endothelium. Stiffness range of gels is given by the Young’s modulus, E.  
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3.5 Summary 

The novel assay described in this chapter (Figure 3.3) allows for a controlled 

analysis of the effects of subendothelial matrix stiffness on ECs and the immune 

response. A key feature of this in vitro model is the incorporation of soft, ECM protein-

coated hydrogels in the kilopascal range of stiffness into the transmigration assay. 

Previously, most transmigration assays have used glass or transwell inserts as the EC 

substrate; however, because these substrates do not have physiological mechanical 

properties, we chose to improve upon these methods by taking into account the flexibility 

of the ECs’ underlying substrate. 

Before putting the entire model together in Chapters 7 and 8, we first explored the 

role of individual components of the model, including cell-cell adhesion and TNF-α 

treatment, on the morphological and biomechanical properties of the ECs. As cells form 

monolayers, they transition from individual cells with only cell-substrate adhesions, to 

groups of cells which form some contacts with each other, and finally to confluent 

monolayers where the cells experience both cell-substrate and cell-cell adhesions. In 

Chapter 4 we show that single cell morphology and biomechanics vary significantly from 

cells within a monolayer and relate these discrepancies to the role of cell-cell adhesion.  

Another important aspect of the in vitro model is EC activation via TNF-α 

treatment. TNF-α is known to cause drastic reorganization of the endothelium, including 

changes in morphology and stiffness. In Chapter 5 we explore more fully these changes 

and also relate them to the migratory behavior of the ECs.  
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4 Effects of Morphology Versus Cell-Cell Interactions on 
Endothelial Cell Stiffness† 
 
 
4.1 Introduction 

 The mechanical properties of cells are important contributors to the health of a 

tissue, and a pathological state can sometimes be determined by measuring the stiffness 

of cells or tissues [115, 116]. For example, arteries stiffen during the progression of 

atherosclerosis [68] and tissues stiffen in cancer [123]. In the case of arteries, the 

mechanical properties of endothelial cells (ECs) are affected by many factors, including 

substrate stiffness, substrate ligands, shear stress, and the presence of soluble molecules. 

In Section 2.4, we summarized various in vitro treatments and conditions that affect 

endothelial cell stiffness (Table 2.1). While it has been widely recognized that it is 

important to study the mechanical properties of cells, much of the published work 

regarding cell stiffness focuses on single cells. Though this simplifies the experimental 

system, it is not always physiological, since, for example, ECs exist as a monolayer at the 

luminal surface of blood vessels. In this state, the cells are exposed to many neighbors in 

close contact, and the junctions are lined with many different molecules which bind the 

cells together [124], one of which is vascular endothelial (VE)-cadherin. VE-cadherin is a 

homophilic proteinthat localizes to cellular junctions, physically links to F-actin, and 

plays an important role in both mechanical [125-128] and biochemical signaling [129-

131] pathways. Due to their role as mechanosensors, cadherins have been suggested as  

____________________ 

† This chapter was originally published as Stroka, K.M. and H. Aranda-Espinoza, Effects of morphology 
vs. cell-cell interactions on endothelial cell stiffness (2011). Cellular and Molecular Bioengineering 4(1), 
9-27. Permission was obtained from the publisher to use this material in the current dissertation. 
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targets for cancer therapy [132]; further, interactions between cadherins, actin, and 

myosin can create the forces necessary for wound closure [133]. While there are many 

proteins that localize at cell-cell junctions, this manuscript focuses on VE-cadherin due to 

its linkage with the actin cytoskeleton, an interaction that seems to be very relevant to 

tension homeostasis and cell stiffness. 

 Cell-cell interactions play a critical role in angiogenesis and endothelial 

homeostasis. As cells gain neighbors during monolayer formation, their morphology 

changes drastically, and it is known that cell geometry plays a significant role in 

regulating homeostasis of a cell [134]. Despite the occurrence of contact inhibition [135-

137] in a monolayer, ECs do have the ability to reorganize themselves, but it is likely a 

different process than what occurs in single cells. While single cells are able to move 

freely, with constraints only due to adhesion with the substrate and cytoskeletal 

remodeling, cells in a monolayer are constrained by cell-cell adhesions as well as cell-

substrate adhesions [138].  

 Cell mechanical properties, specifically, traction force generation, have been 

shown to depend on the presence of neighbors. Cell traction forces increase when two 

cells come in contact [139]. Further, two cells are able to communicate mechanically 

with each other when grown on soft, flexible substrates [57]. There is also evidence that 

cells maintain tension through cell-cell junctions [46, 140] and are able to communicate 

mechanically during collective cell migration [141]. However, we do not know how cell-

cell interactions affect cell stiffness, nor do we fully understand how cells communicate 

mechanically in a monolayer. As mentioned above, such changes in cell stiffness might 
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affect important physiological functions, such as immune cell transmigration, 

atherogenesis, and cancer cell metastasis. 

 Here we use atomic force microscopy (AFM) to measure the Young’s modulus of 

live human umbilical vein endothelial cells (HUVECs). AFM is a useful tool for 

measuring the response of cells to an applied force, from which the Young’s modulus can 

be calculated. Hoffman and Crocker provide an extensive review on the response of cells 

to applied forces and a summary of different tools for measuring those responses [142]. 

AFM imaging can further be used to obtain topographical information about a sample. 

Previously, AFM has been used to quantify the Young’s modulus of many cell types. For 

example, for ECs specifically, AFM has been used to determine the effects of 

environmental conditions such as oxidized low density lipoprotein [33], potassium [35], 

plasma sodium [34], and  substrate stiffness [73] on cell stiffness. For soft samples such 

as cells, the Hertz-Sneddon model has often been used to determine Young’s modulus 

from AFM force-distance curves (for review see [143]), and AFM cantilevers with 

spherical probes have been used to minimize exerted traction on the cells. The Hertz-

Sneddon model [144] represents cells as isotropic, linearly elastic half-spaces and holds 

when deformations are small. It assumes an infinitely hard tip that is much stiffer than the 

deformable sample, and it can also account for the geometry of the tip. These 

assumptions can be made under our experimental conditions, and thus the Hertz-Sneddon 

model is appropriate to use in our case. Further details on the theoretical basis for this 

model can be found in several references [144-146]. 

 Here, we combine AFM imaging with force measurements on live cells to obtain 

a topographical map that contains local measurements of Young’s modulus at specific 
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locations. We measure both Young’s modulus and area of spreading cells and find that 

cell stiffness increases with spreading area. Then, we measure the area and stiffness of 

single cells, groups, and monolayers and find that morphology can roughly be used to 

predict cell stiffness, though monolayers are stiffer than expected based on cell area. 

However, when F-actin is significantly disrupted using a high dose of cytochalasin B 

(cytoB), we observe drastic cell rounding, as previously reported [147, 148], and the 

stiffness of the cells softens to the measured value based on spreading area. When cell-

cell junctions in a monolayer are presumably weakened through a low dose of cytoB 

treatment or VE-cadherin antibody application, cell monolayer stiffness approaches that 

of single cells, and cell-substrate adhesion increases, suggesting the importance of cell-

cell adhesions in signaling to the cell’s mechanical machinery. 

 

4.2 Materials and methods 

4.2.1 Cell culture 

 HUVECs were obtained from Lifeline Cell Technology (Walkersville, MD) and 

grown in tissue culture polystyrene flasks (Fisher Scientific, Pittsburgh, PA) at 37˚C, 5% 

CO2, and 55% humidity. HUVECs were cultured in VascuLife Basal Medium (Lifeline 

Cell Technology) supplemented with 2% fetal bovine serum (FBS), 10 mM L-glutamine, 

0.2% EnGS, 5 ng/mL rh EGF, 1 µg/ml  hydrocortisone hemisuccinate, 0.75 units/mL 

heparin sulfate (Lifeline Cell Technology), 10,000 units/mL penicillin, and 10,000 

µg/mL streptomycin (Gibco, Carlsbad, CA) according to the manufacturer’s 

specifications. HUVECs were split at 80-90% confluency, and passages 2-5 were used 

for experiments. Synchronization of cells was accomplished by (a) growing cells to 
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confluency and (b) using low serum media (2%), according to Reinhart-King, 2008 

[149]. Glass coverslips (22x22 mm, No. 1.5, Fisher Scientific) were coated with 0.1 

mg/mL fibronectin (Sigma, St. Louis, MO) for 2 hours at room temperature. Cells were 

plated onto fibronectin-coated glass coverslips at high density (4x105 cells) and grown for 

approximately 48 hours until monolayer formation. For single cell studies, HUVECs 

were plated at low density (8x103 cells), while for groups, HUVECs were plated at 

medium density (2x104 cells). Media was changed every 48-72 hours. To weaken cell-

cell junctions, two treatments were used: (a) HUVECs were treated with 2 µg/mL, 100 

ng/mL, or 10 ng/mL cytochalasin B (Sigma) for 1 hour at 37˚C, and (b) HUVECs were 

treated with 1:100 dilution (10 µg/mL) of anti-VE-cadherin (Sigma V1514) for 1 hour at 

37˚C just prior to experiments. 

 

4.2.2 Cell staining 

 HUVECs were fixed in 2% paraformaldehyde (MP Biomedicals, Solon, OH) for 

20 minutes, permeabilized in 1% TRITON-X 100 (VWR International, West Chester, 

PA) for 5 minutes, and blocked for non-specific binding in 2% bovine serum albumin 

(BSA; Sigma) for one hour. For visualization of cellular borders, cells were incubated in 

primary antibody (rabbit polyclonal to β-catenin; Abcam ab2365, Cambridge, MA) at a 

1:100 dilution (2 µg/mL) for 2 hours. For visualization of focal adhesions, cells were 

incubated in primary antibody (anti-vinculin antibody, produced in mouse; Sigma 

V9131) at a 1:200 dilution (48 µg/mL) for 1 hour. Non-specific binding was blocked 

again after primary antibody application in 2% BSA for one hour. For β-catenin primary 

antibody, cells were incubated in secondary antibody (Rabbit Ig, Fluoroscein-linked 
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Whole Ab; GE Healthcare N1034, Piscataway, NJ) at a 1:20 dilution (105 µg/mL) for 

one hour.  For vinculin primary antibody, cells were incubated in secondary antibody 

(anti-mouse Alexa 488; Invitrogen A11001, Carlsbad, CA) at a 1:200 dilution (10 

µg/mL) for one hour. Primary and secondary antibodies were diluted in 2% BSA with 

phosphate buffered saline (PBS). For visualization of F-actin, cells were incubated in 0.1 

µM Phalloidin-TRITC (Sigma) for 30 minutes. For nuclear staining, cells were treated 

with 2 µg/mL Hoechst stain (Invitrogen) for 5 minutes. All treatments were completed at 

room temperature. Cells were washed with PBS between each step. 

 

4.2.3 Atomic force microscopy  

 Young’s moduli of live HUVEC monolayers were measured using an atomic 

force microscope (AFM; Agilent, Santa Clara, CA) with a silicon nitride cantilever 

(Novascan, Ames, IA) with a spherical glass SiO2 probe of diameter 5 µm. The deflection 

sensitivity of the cantilever was measured using glass as a stiff surface. The cantilever 

spring constant was measured using Thermal K software (Molecular Imaging 

Corporation, San Diego, CA), where the cantilever was treated as a simple harmonic 

oscillator, according to the thermal fluctuation method [150, 151]. The power spectrum 

of the AC signal was used to determine the mean-square amplitude of the cantilever, 

which was then used to solve for the spring constant. The manufacturer’s nominal value 

for the cantilever spring constant (k) was 0.01 N/m, and the values obtained with 

ThermalK were within a factor of 2 (generally 0.006-0.008 N/m). Glass substrates with 

HUVECs attached were positioned under the AFM tip and typical force curves (Figure 
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4.1A) were captured in different locations along the cells. All force curves and imaging 

were done at room temperature in FBS-free HUVEC media in an AFM liquid chamber. 

____________________ 

 

 

 
Figure 4.1. Atomic force microscopy methods. (A) Example of a force versus distance curve 
obtained by atomic force microscopy (AFM). Prior to contact between the AFM tip and the 
sample (a) there is no deflection of the laser. Once the tip has contacted the sample (b), the laser 
begins to deflect as the sample is indented (c). (B) Deflection versus distance data were fit using 
the Hertz-Sneddon model (see Materials and Methods). The point of contact was chosen when the 
slope became nonzero (approximately 50 pN/nm after converting to force versus distance), while 
the final indentation was chosen to be about 250 nm. In the case of a very stiff sample, the 
deflection (or force) rises sharply with distance. Curves are shown for a soft location (i.e. cell 
body) and a relatively stiff location (i.e. periphery). (C) Young’s modulus of single cells at the 
cell body and periphery locations (See Figure 3-A for clarification) at both room temperature 
(23˚C) and 37˚C with 5% CO2 and 55% humidity. No significant differences were measured 
between these conditions using our experimental set-up. 
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 The AFM procedure was begun by first scanning a region of interest (90x90 µm) 

using contact mode. Then, in the AFM Picoscan software, specific locations (25 per scan) 

were selected by hand, both at the periphery and cell body. The region of interest was 

scanned again and this time force versus distance curves were taken at the chosen 

locations. Five to 20 images were obtained per sample, and 2-5 different samples were 

analyzed for each condition. The maximum size of the scan (90 µm by 90 µm) was large 

enough to capture most of one single cell per image and 3-6 cells within a monolayer per 

image. A force of approximately 2 nN was applied to the cells by the AFM cantilever, 

and this force was spread out over the large area of the 5 µm spherical probe attached to 

the cantilever, lessening the resulting applied traction. In performing AFM on living 

cells, AFM cantilevers containing spherical probes have an advantage over sharp tips, 

which can damage cells due to their tiny surface area (traction=force/area). AFM imaging 

and measurements were generally taken within one hour.  

 In a custom-written Matlab (The MathWorks, Natick, MA) program (Appendix 

A), data were fit to the Hertz-Sneddon model [144] for a paraboloid indenter [146]: 

, 

where Fparaboloid is the force exerted by the paraboloid indenter, E is the Young’s modulus 

of the cell, R is the radius of curvature of the indenter, and δ is the distance of the 

indenter from the sample (Figure 4.1B). Note that R for a sphere is equal to the radius of 

the sphere, and therefore R=2.5 µm for the glass probe. The cells were assumed to be 

nearly incompressible [152] and therefore it was assumed that ν = 0.45 is the Poisson’s 

ratio of the elastic halfspace. Note that the force is also equal to the cantilever spring 

constant (k) times the change in position of the laser (as a measurement of the deflection 
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of the cantilever). The Young’s modulus was found for each force curve using the fitting 

algorithm. A maximum indentation of about 250 nm was chosen for fitting, since at small 

indentations the Young’s modulus depends greatly on indentation depth [153], while the 

Hertz-Sneddon model does not hold at large indentations.  Two hundred fifty nanometers 

is sufficiently small compared to the height of the cell (several microns). The point of 

contact of the cantilever (Figure 4.1A) with the sample was chosen to be the point at 

which the derivative of the force-distance curve became nonzero, or about 50 pN/nm. 

Thus, data were fit from the point of contact to the maximum indentation value. Average 

Young’s modulus was computed by averaging all force curves for a given condition. 

Statistical tests were done between pairs using a Student’s t-test, or among groups using 

ANOVA, where P<0.05 indicated statistical significance. Multiple comparisons were 

done in ANOVA using Tukey’s honestly significant difference criterion. All 

measurements reported in this article are in the format mean ± standard error.  

 

4.2.4 Cell spreading combined with AFM 

 To determine the relationship between cell spreading and cell stiffness, HUVECs 

were trypsinized from tissue culture flasks, diluted with media, centrifuged, resuspended 

in FBS-free media, plated onto fibronectin-coated glass coverslips immediately, placed 

within the AFM liquid chamber, and allowed to attach to the substrate for 15-30 minutes 

before beginning AFM measurements. A low number of cells (8x103) were plated in 

order to ensure the presence of single cells on the surface of the coverslip. Cells that were 

relatively close to other cells were not analyzed, to avoid effects of cell-cell contact on 

the spreading process. The AFM tip was positioned over the cell. A minimal amount of 
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cell attachment was necessary to ensure the cell did not move out from between the 

cantilever and the substrate. This level of attachment was determined through observation 

of the cell morphology in brightfield microscopy, when lamellipodia formation began. 

When this occurred, the AFM tip was lowered to the raised spherical central region of the 

cell (not the flattened periphery). AFM force measurements were taken every 30 seconds 

or 2 minutes during spreading without moving the cantilever horizontally in between 

measurements, and brightfield images were captured simultaneously every 30 seconds 

during spreading. Young’s modulus was determined from force-distance curves as 

described in the previous section. To compute area, cells were traced by hand in ImageJ. 

A sample size of N=8 spreading cells was used. A “morphology curve” was created using 

the spreading data, by plotting Young’s modulus versus area, with each data point 

representing the average area and Young’s modulus of N=8 spreading cells at the same 

time points. Because the stiffnesses of spreading cells were averaged for each time point, 

and these data points included both periphery and cell body regions, the average stiffness 

of the periphery and cell body regions was plotted for each of single cells, groups, and 

monolayers. 

 

4.2.5 Phase contrast, confocal, and total internal reflection fluorescence microscopy 

 Brightfield and phase contrast microscopy of HUVECs was completed at 37°C, 

5% CO2 and 55% humidity using an inverted microscope (Olympus IX71, Center Valley, 

PA). Images were captured with a QImaging Retiga-SRV charge-coupled device (CCD) 

digital camera (QImaging Corporation, Surrey, British Columbia, Canada). Confocal 

microscopy was completed at room temperature on immunostained HUVECs using an 
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inverted scanning disk confocal microscope (Olympus IX81). Images were captured with 

0.3 µm between planes on a Hamamatsu ORCA-ER CCD digital camera (Leeds 

Precision Instruments, Minneapolis, MN).   

 Total internal reflection fluorescence microscopy (TIRFM) was completed on 

samples (on n=1.5 glass coverslips) stained with vinculin antibody and FITC secondary 

antibody (as described above in Section 4.2.2) at room temperature using an inverted 

microscope (Olympus IX81) using a 60x oil immersion lens, as previously described 

[154]. Samples were illuminated with an ion laser of wavelength 488 nm (Melles Griot, 

Rochester, NY), and images were captured with a QImaging Rolera-MGi CCD digital 

camera (QImaging Corporation). The angle of laser incidence was adjusted once at the 

start of the experiment and was not adjusted between samples to ensure that the same 

plane was illuminated in each sample. In TIRFM, when the angle of incidence of light is 

greater than the critical angle for total internal reflection, an evanescent field is generated 

at the glass-sample interface. This evanescent field decays exponentially with distance 

normal to the interface, creating a thin layer of illumination (≤100 nm; [155]). TIRFM 

was chosen for imaging cell-substrate interactions over widefield fluorescence 

microscopy due to the thin layer of illumination that eliminates background fluorescence 

in TIRFM. 

 

4.2.6 Morphological analysis 

 To aid with morphological analysis, HUVEC monolayers were fixed and 

immunostained for β-catenin in order to visualize cellular borders. For area analysis of 

single cells and cells within groups, individual HUVECs were traced by hand in ImageJ 
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(National Institutes of Health, Bethesda, MD). For analysis of focal adhesion size and 

density we used the method as previously described [154]. Briefly, cells were stained for 

vinculin and TIRFM images were obtained. Images were made binary and the particle 

analyzer was used in ImageJ to measure vinculin punctuate sizes larger than 0.5 µm2 and 

counts per area. Statistical tests were done using a Student’s t-test, where P<0.05 

indicated statistical significance. 

 

4.3 Results 

4.3.1 Cell stiffness measurements are similar to those under culture conditions 

 Our AFM images and force curves on single cells, groups of cells, and 

monolayers were all performed at room temperature conditions. To evaluate the 

dependence of cell stiffness on temperature, CO2, and humidity, we measured the 

stiffness of single cells at both room temperature (23˚C) and culture conditions (37˚C 

with 5% CO2 and 55% humidity) using an enclosed chamber. In our experimental set-up, 

performing AFM at room temperature versus culture conditions does not make a 

difference (Figure 4.1C). There is no statistical difference between the Young’s moduli at 

the cell body (P=0.34; N=326 force curves from 30 cells at 23˚C and N=181 force curves 

from 14 cells at 37˚C) or periphery (P=0.56; N=410 force curves from 30 cells at 23˚C 

and N=302 force curves from 14 cells at 37˚C), according to a Student’s t-test. 

Distinction between cell body and periphery locations are later discussed in Figure 4.3.  

 These results may differ from experiments where the cells are placed in room 

temperature medium, allowed to equilibrate to room temperature, and kept at room 

temperature for long periods of time, much longer than one hour. In our experimental 
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procedure, we removed cells directly from the incubator (conditioned at 37˚C and 5% 

CO2), washed them with PBS (warmed to 37˚C), and then added the media (also warmed 

to 37˚C) for AFM. Therefore, the cells began in a 37˚C environment. We imaged them 

and took force measurements for relatively short periods of time (under one hour, as 

stated in our methods), though we would expect the media to cool moderately over the 

course of the experiment. However, we did not observe stiffening or softening of the cells 

over the course of AFM, further indicating that the temperature or CO2 conditions did not 

affect our measurements during our experimental time window. 

 

4.3.2 Cell area depends on degree of cell-cell contact 

 HUVECs were plated at low, medium, or high density onto glass coverslips 

coated with fibronectin. At low density, single cells were observed. At medium density, 

cells were observed in groups of 3-13 cells where they formed isolated islands. At high 

density, cells formed confluent monolayers within 48 hours.  

 We found that single cells are larger in area (2045±65 µm2; N=167 cells) than 

cells within a monolayer (1029±25 µm2; N=192, P<0.001), consistent with previous 

reports [156]. Cells in groups are larger (3030±73 µm2; N=249, P<0.001) than both 

single cells and cells in a monolayer (Figure 4.2A). Phase contrast images of single cells 

(Figure 4.2B), a group of 4 cells (Figure 4.2C), and a monolayer of cells (Figure 4.2D) 

show the differences in cell size as a function of degree of cell-cell contact.  
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Figure 4.2. Effects of cell-cell adhesion on cell morphology. (A) Cellular area as a function of 
degree of cell-cell contact on fibronectin-coated glass substrates. Bars indicate mean of N cells, 
while error bars indicate standard error. N equals 167, 249, and 192 for single cells (S), groups 
(G), and monolayers (M), respectively. * indicates p<0.05 with single cells, while ^ indicates 
p<0.05 with monolayers using ANOVA. Also shown are phase contrast images of (B) a single 
cell, (C) four cells in contact, and (D) a monolayer of cells. Scale bars are 20 µm. 
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4.3.3 Single cells are stiffer than cells in a monolayer 

 AFM was performed on HUVECs at varying degrees of cell-cell contact on 

fibronectin-coated glass substrates. AFM deflection images demonstrate the topography 

of a single HUVEC (Figure 4.3A), group of three HUVECs (Figure 4.3B), and 

monolayer of HUVECs (Figure 4.3C). Each of these images indicates that the cell 

topography consists of both a raised portion, which likely contains the nucleus and other 

organelles and which we label the “cell body” (black arrows in Figures 4.3A through 

4.3C), and also a more flattened region, which we label the “periphery” (white arrows in 

Figures 4.3A through 4.3C). We also compared the Young’s moduli of single cells at 

room temperature and at 37˚C with 5% CO2 and 55% humidity and verified that under 

our experimental conditions AFM gave similar results.  

 For all degrees of cell-cell contact, the Young’s modulus of the periphery is larger 

than the Young’s modulus at the cell body location (Figure 4.3D). We found that the 

Young’s modulus of single cells is larger than that of monolayers, both at the cell body 

(E=854±39 Pa, N=195 for single cells and E=757±16 Pa, N=246 for monolayers, 

P=0.013) and periphery locations (E=1558±46 Pa, N=284 for single cells and E=1042±14 

Pa, N=457 for monolayers, P<0.001) (Figure 4.3D). At the cell body (E=886±72 Pa, 

N=44 for groups of 3 cells; E=880±76, N=67 for 4-5 cells; and E=786±130, N=16 for 

groups of 6-13 cells), the Young’s modulus of groups of 3-5 and groups of 6-13 cells is 

not different from that of single cells (P>0.600), while at the periphery (E=1899±60 Pa, 

N=100 for groups of 3 cells; E=1742±70, N=98 for 4-5 cells; and E=1738±106, N=46 for 

groups of 6-13 cells) the Young’s modulus is larger than both single cells (P<0.001, 
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P=0.037, P=0.139, respectively with increasing group size) and monolayers (P<0.001 for 

all groups) (Figure 4.3D).  

 Further, the distributions of Young’s moduli for single cells (Figure 4.3E), groups 

(Figure 4.3F), and monolayers (Figure 4.3G) indicate the large variation in stiffness 

among cells, even when looking at the same region (cell body or periphery). These 

distributions show that for single cells and groups, the distributions are fairly wide 

(Figures 4.3E and 4.3F), while for monolayers, the distributions are much tighter (Figure 

4.3G). Thus, monolayers are more homogeneous in terms of stiffness than both groups 

and single cells.  

 

____________________ 
 
 
 
 
 
Figure 4.3. Effects of cell-cell adhesion on endothelial cell stiffness. Atomic force microscopy 
contact deflection images of (A) a single control endothelial cell, (B) 3 cells in contact, and (C) a 
monolayer of cells. Image size is 90 µm by 90 µm. Black arrows point to examples of cell body 
locations, while white arrows point to examples of periphery locations. (D) Young’s modulus of 
cells for the cell body and periphery locations as a function of cell-cell contact. Bars indicate 
mean of N force curves per condition, while bars indicate standard error. * indicates p<0.05 with 
single cells at the same location, while ^ indicates p<0.05 with groups of 3 cells at the same 
location using ANOVA. For all locations, the periphery region is stiffer than the cell body region 
(p<0.05 using t-test). N=195, 44, 67,16, 246 for single cells, groups of 3 cells, groups of 4-5 cells, 
groups of 6-13 cells, and monolayers, respectively, at the cell body location. N=284, 100, 98, 46, 
457 for single cells, groups of 3 cells, groups of 4-5 cells, groups of 6-13 cells, and monolayers, 
respectively, at the periphery location. Also shown are distributions of Young’s moduli for (E) 
single cells (N=195 for cell body and N=284 for periphery region), (F) all groups of cells (N=127 
for cell body and N=244 for periphery region), and (G) monolayers (N=246 force curves for cell 
body and N=457 force curves for periphery region).  
 



www.manaraa.com

  54 

 



www.manaraa.com

  55 

4.3.4 Cell stiffness increases during spreading 

 One approach to determine the relationship between cell morphology and stiffness 

is to measure the stiffness and area of a single cell simultaneously as it spreads (Figure 

4.4). We performed this experiment by obtaining brightfield timelapse images while 

taking AFM force curves on a single spreading cell following trypsinization. Note that we 

did not scan the cell with AFM, but rather the cantilever remained stationary (in the 

horizontal plane) as the cell spread. Following the typical cell spreading process [157], 

the HUVECs began as spheres upon plating, presumably formed initial adhesions to the 

substrate upon lamellipodium formation (Figure 4.4D, T=0), and spread fairly 

isotropically onto the substrate over the course of one hour (Figures 4.4D and 4.4E). 

HUVECs flattened as they spread, as it was necessary to bring the sample closer to the 

AFM cantilever during spreading in order to avoid flat-lining the force-distance curves.  

 We found that for all cells probed (N=8 cells), the Young’s modulus of the cell 

increased as spreading area increased (Fig 4.4). This behavior was independent of how 

often the cell was probed with the AFM cantilever (every 30 seconds in Figures 4.4A and 

4.4B and every 2 minutes in Figure 4.4C). The Young’s modulus at the initial timepoint 

(E~400 Pa) indicates a lower bound of cell stiffness, where the cell is (visibly) slightly 

attached to the substrate as determined by brightfield microscopy, but still is round in 

morphology. The Young’s modulus at this point is very similar to that when cells have 

been treated with cytoB to disrupt F-actin (gray outlined dots at time=0 in Figure 4.4). 

See Section 4.3.6 and Figure 4.5A for more discussion on the effects of cytoB treatment.   
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Figure 4.4. Young’s modulus and cell area versus time for three representative spreading cells. A 
time of T=0 indicates the time at which measurements began; typically this was 15-30 minutes 
after plating. Shown are plots for three different representative cells, with AFM measurements 
taken every 30 seconds (A and B) or every 2 minutes (C). Gray outlined dot at T=0 indicates 
typical Young’s modulus of cytochalasin B-treated cells. Gray large dashed line and gray small 
dashed line indicate typical Young’s modulus of control single cells at the cell body and 
periphery locations, respectively. (D) Time-course sequence of spreading cell from panel B. 
These images show the AFM cantilever positioned over the cell during spreading. The cantilever 
remained stationary during the course of spreading. In each image cells have been outlined in 
black by hand to help with cell visualization. Scale bar is 20 µm for all images. (E) AFM 
deflection image of cell from panel C after it has completely spread. Image size is 90 µm by 90 
µm. 
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4.3.5 Cell stiffness and spreading area correlate for single cells and groups 

 Using the data obtained from performing AFM on spreading cells, we also plotted 

Young’s modulus versus area, with each data point indicating the average Young’s 

modulus and area of N=8 cells (Figure 4.5) at the same time point. We call this the 

“morphology curve.” The white outlined circles in Figure 4.5 therefore represent the 

measured Young’s modulus of a cell, given its area. We found that the (area, stiffness) of 

single cells and groups both lie on this curve, while monolayers are stiffer than expected 

(Figure 4.5). Furthermore, monolayers treated with 2 µg/mL cytoB do lie on the 

measured morphology curve, while monolayers treated with VE-cadherin antibody and 

10 ng/mL cytoB lie above it. 

____________________ 
 

 

Figure 4.5. Young’s modulus versus area for spreading cells. Also shown are the average (area, 
stiffness) of single cells (S), groups (G), monolayers (ML), and monolayers treated with VE-
cadherin antibody (VE-cad Ab) or cytochalasin B (cytoB). In all cases, the stiffness plotted is the 
average stiffness of the cell body and periphery regions. N=8 spreading cells. 
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4.3.6 Cell stiffness is dependent on concentration of cytochalasin B 

 Cell-cell adhesions in a monolayer can be broken or weakened via several 

methods. In the extreme, they can be completely disrupted by interfering with the F-actin 

network, which is critical for maintaining cell-cell junctions and tensional homeostasis 

within the cells. We used the cytoB treatment to cap actin filaments, preventing further 

polymerization and leading to net depolymerization of the filaments.  It has previously 

been reported that cells soften when treated with drugs of the cytochalasin family [147, 

148].   

 We treated HUVECs with decreasing concentrations of cytoB to vary the amount 

of F-actin disruption. The mechanical response of the monolayer depended on the 

concentration of drug applied (Figure 4.6A). With the highest concentration of cytoB (2 

µg/mL; “high”), the average Young’s modulus is smaller than control cells, both at the 

cell body (E=454±27 Pa, N=70, P<0.001) and periphery locations (E=583±29 Pa, N=22, 

P<0.001). With this treatment, the monolayer is completely disrupted, as evidenced in the 

AFM deflection image (Figure 4.6B), where the HUVECs have undergone significant 

rounding due to the high degree of actin depolymerization. With a smaller concentration 

of cytoB (100 ng/mL; “intermediate”), the average Young’s modulus is smaller than 

control cells at the cell body (E=623±26, N=110, P<0.001), but it is not different from 

control cells at the periphery (E=986±30, N=198, P=0.051). AFM deflection images 

indicate that with this amount of F-actin disruption, some cell-cell adhesions have 

remained intact; however, there are also large gaps in the monolayer where the cells have 

retracted and cell-cell adhesions are disrupted (Figure 4.6C). Finally, with the least harsh 

treatment of cytoB (10 ng/mL; “low”), the Young’s modulus is surprisingly larger than 
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control cells, both at the cell body (E=1157±46, N=116, P<0.001) and periphery 

(E=1524±43, N=176, P=0.004). With this treatment, the cell monolayer is still mostly 

visibly intact, with some disruption indicated by the presence of tether-like structures 

between adjacent cells (Figure 4.6D; white arrowheads). These tether-like structures are 

present at many cell-cell adhesion sites. There is no statistical difference in area of the 

cells, compared with cells in control monolayers. The Young’s modulus of cell 

monolayers treated with low cytoB is not different from control single cells at the 

periphery region, while it is different at the cell body region.  

 

4.3.7 Monolayers stiffen when junctions are destabilized with VE-cadherin antibody 

 A second approach to destabilizing cell-cell adhesions in HUVEC monolayers is 

by applying a VE-cadherin antibody. We found that in HUVEC monolayers, treatment 

with a VE-cadherin antibody results in an increase in Young’s modulus, both at the cell 

body (E=908±21, N=241, P<0.001) and periphery (E=1214±14, N=583, P<0.001) 

(Figure 4.6E). Meanwhile, there is no difference in cell area, compared with control 

monolayers. 

 To determine the baseline effect of the VE-cadherin antibody when no cell-cell 

adhesions are present, we performed the same experiment on single cells. Interestingly, 

single cells treated with a VE-cadherin antibody are softer than control cells, both at the 

cell body (E=623±28, N=84, P<0.001) and periphery (1387±61, N=160, P=0.025). 

Further, VE-cadherin antibody-treated cells follow the trend that single cells are stiffer 

than cells within a monolayer. AFM deflection images of single cells and monolayers 
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treated with VE-cadherin antibody do not look different from images of control cells 

(Figures 4.6F and 4.6G).  

 

____________________ 
 

 

 

 

Figure 4.6. Effects of F-actin and cell-cell adhesion disruption on endothelial cell stiffness. Mean 
Young’s modulus for (A) cytochalasin B (cytoB)-treated cells and (E) VE-cadherin antibody 
(VE-cad Ab)-treated cells at the cell body and periphery locations. Bars indicate mean of N force 
curves, while error bars indicate standard error. * indicates p<0.05 with control at same location 
using Student’s t-test. N=246, 241, and 70 for control, VE-cadherin antibody-treated, and cytoB-
treated cells, respectively, at the cell body (CB) location. N=457, 583, and 22 for control, VE-
cadherin antibody-treated, and cytoB-treated cells, respectively, at the periphery (P) location. 
Also shown are AFM contact deflection images of HUVEC monolayers treated with (B) 2 µg/mL 
cytoB, (C) 100 ng/mL cytoB, and (D) 10 ng/mL cytoB. White arrowheads in panel D point to 
tether-like structures at cell-cell junctions. Also shown are (F) single cells and (G) monolayers, 
both treated with a VE-cadherin antibody. AFM image size is 90 µm by 90 µm. 
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4.3.8 Actin cytoskeleton architecture depends on degree of cell-cell contact 

 We used confocal imaging of phalloidin-actin-stained samples to evaluate the 

architecture of the F-actin network as a function of degree of cell-cell contact. We found 

that control single cells and groups have well-developed stress fibers arranged in parallel 

throughout the entire length and width of the cell, and most of these stress fibers within a 

given cell are oriented locally in the same direction (Figures 4.7A and 4.7B). Cells in 

monolayer also have well-developed stress fibers, yet they are oriented mostly around the 

cell borders, with only some extending along the length of the cell (Figure 4.7C). Cells 

treated with 2 µg/mL cytoB show complete disruption of F-actin, as expected (Figure 

4.7D). Cells treated with 100 ng/mL show significant monolayer disruption, with several 

F-actin filaments or bundles tethering to neighboring cells (Figure 4.7E; white 

arrowheads). Meanwhile, in cells treated with a very low dose of cytoB (10 ng/mL), we 

do not observe differences in F-actin arrangement as compared to control monolayers 

(Figure 4.7F). Further, the F-actin structure of both single cells and monolayers treated 

with VE-cadherin antibody do not show differences as compared with the controls 

(Figures 4.7G and 4.7H).  

 

4.3.9 Focal adhesion size and density depend on degree of cell-cell contact 

 To determine whether differences in cell stiffness could be partially explained by 

focal adhesion (FA) assembly [154, 158], we immunostained for vinculin, performed 

total internal reflection microscopy (TIRFM) on the samples (Figures 4.7I and 4.7J), and 

measured the size and density of FAs as a function of degree of cell-cell contact. We 

found that FAs in monolayers are the same size as in single cells (~1.4 µm2, P=0.900; 
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Figure 4.7K), but there are less FAs per area in monolayers (P<0.001; Figure 4.7L). FAs 

in groups are larger than in single cells (~1.6 µm2, P<0.001) but are present at the same 

density as in single cells (P=0.501; Figure 4.7L). FAs in single cells treated with VE-

cadherin antibody are not different in size from FAs in control single cells (P=0.289; 

Figure 4.7K), but, interestingly, they are more densely arranged (P<0.001; Figure 4.7L). 

Finally, FAs in monolayers treated with VE-cadherin antibody or a low dose of cytoB are 

larger than FAs in control monolayers (P<0.001; Figure 4.7K), and FAs in both 

treatments are more dense (P<0.001; Figure 4.7L). FAs of cell monolayers treated with 

intermediate (100 ng/mL) and high (2 µg/mL) doses of cytoB were significantly 

dissolved and thus we did not measure their size or density.  

  

____________________ 

 

Figure 4.7. Effects of cell-cell adhesion on F-actin and focal adhesion arrangement. Confocal 
images of control (A) single cell, (B) group of cells, and (C) monolayer of cells. Also shown are 
confocal images of monolayers treated with (D) 2 µg/mL, (E) 100 ng/mL, and (F) 10 ng/mL 
cytochalasin B to disrupt F-actin. White arrowheads in panel E indicate F-actin filaments or 
bundles tethering neighboring cells. Also shown are confocal images of (G) single cells and (H) 
monolayers treated with a VE-cadherin antibody. White scale bar in panel A is 20 µm and applies 
to all images. Phalloidin-actin is stained in red, vinculin (focal adhesion marker) in green, and 
DNA in blue. Total internal reflection fluorescence microscopy (TIRFM) images were also taken 
using a laser of wavelength of 488 nm to illuminate the FITC-labeled vinculin, resulting in 
images which we analyzed for focal adhesion (FA) size and density (number per area). We show 
a (I) raw TIRFM image of a single cell and (J) a processed TIRFM image made into binary, as 
described in the Section 4.2.6. White scale bars in panel I and (J) are 20 µm.  Shown also are 
plots of (K) average FA size and (L) average FA density. Bars indicate average while error bars 
indicate standard error of measurements from a minimum of 20 images. * indicates p<0.05 with 
control of same degree of cell-cell contact (single cell or monolayer), while ^ indicates p<0.05 
with single cell control using Student’s t-test. S=single cells, G=groups, M=monolayers, 
VEcad=VE-cadherin antibody-treated, cytoB=cytochalasin B-treated. 
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4.4 Discussion 

 Our data suggest that cell area correlates roughly with cell stiffness. However, in 

groups or in monolayers, cells have several neighbors, and cell-cell interactions likely 

play a role in determining cell stiffness. It was our goal to determine whether cell 

mechanics is necessarily governed by spreading area or whether cell-cell interactions 

play a significant role in determining the mechanical properties of cells within a 

monolayer.  

 Our rationale for evaluating the stiffness of groups of cells was to have a system 

in which the size of the cells was similar to that of single cells, yet cell-cell adhesions 

were also present. However, we observed that cells in groups of cells are actually larger 

(by a factor of ~1.5), and also stiffer, than single cells (Figures 4.2 and 4.3). One 

possibility is that the cells, after coming in contact with another cell or group of cells, are 

extending towards the free periphery, away from the group, to facilitate migration. This is 

reminiscent of the leading edge of an epithelial cell sheet, where microtubule plus ends 

are very dynamic near free non-contacted cell edges and suppressed at cell-cell contacts; 

further, the continuous polymerization and retrograde flow of actin which is necessary for 

cell motility is inhibited at cell-cell contacts [159]. Some degree of cell-cell adhesion has 

already formed at this point, and the cell’s area may increase because it is attempting to 

move away from the group, as in EC sheet migration [160]. If this is true, it is possible 

that the larger cell contains an actin cytoskeleton-plasma membrane cortex which is 

under more tension than in smaller, single cells. Experimentally, we measure larger FAs 

in groups than in single cells (Figure 4.7K), and because traction forces and FA area are 

correlated [161] and also F-actin tension and cell stiffness are correlated [24], we believe 
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that stress fiber tension may be increased in groups, even though we do not observe 

differences in F-actin structure. This is in agreement with the reports of Califano and 

Reinhart-King (2010) where cell traction forces increase when two cells come in contact 

[139]. Further, cells in a monolayer are tightly packed and smaller (Figure 4.2), with less 

FAs per area (Figure 4.7L) and stress fibers oriented mainly around the cell borders 

(Figure 4.7C), possibly leading to decreased F-actin tension and decreased cell stiffness 

compared with single cells and groups. The decreased FA density and rearrangement of 

F-actin in monolayers suggests that the monolayer integrity is maintained more through 

cell-cell contacts than through cell-substrate contacts, while single cells must rely solely 

on cell-substrate adhesion for support.  

 Previously, it has been shown by Nelson et al. [156] that cell area and FA area 

both decrease with increasing cell density through activation of RhoA, which is in 

contrast to the increased cell area and FA size in our groups. However, in Nelson et al., 

when spreading area is confined using a micropatterned substrate, FA size is larger for 

two cells in contact, as compared with a single cell, which is in agreement with our 

results for groups. It could be possible that in our experiments, our cells had more free 

space around them during group formation, allowing for outward extension, while in 

Nelson et al. there was an increased cell density which restricted cell size. It would be 

interesting to investigate the effects of cell-cell contact length on FA size; using a 

micropatterned substrate, this could be achieved by increasing or decreasing the cell-cell 

contact region in Nelson et al.’s bowtie configuration.  

 To corroborate the notion that cell morphology affects cell stiffness, we 

simultaneously measured the stiffness and area of a spreading cell using AFM combined 
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with brightfield timelapse images. This experiment allowed us to observe changes in cell 

area without the presence of neighboring cells or cell-cell adhesions. Our measurements 

began when the cells were approximately 30-40% of their final spreading area. Our 

results show that HUVECs increase in stiffness as they spread (Figure 4.4), which might 

be expected since they transform from round spheres with a layer of cortical actin, to 

spread-out objects adhering to the substrate and containing a stiff network of cross-linked 

actin filaments and cortical actin under tension [162]. The value which the final Young’s 

modulus approaches provides a rough indication of whether the cell body (compare with 

gray large dashed line in Figure 4.4) or periphery (compare with gray small dashed line in 

Figure 4.4) has been probed. For example, in Figures 4.4A and 4.4B the periphery is 

likely being probed, while in Figure 4.4C it is likely the cell body. We believe that the 

force exerted by the AFM cantilever had minimal effect on cell spreading, as we did not 

observe differences in spreading when we increased the time interval (30 seconds to 2 

minutes) between “pokes” with the AFM cantilever. Further, HUVEC spreading in the 

presence of the AFM cantilever was similar to spreading in its absence, suggesting that 

the AFM tip itself had minimal impact on cell spreading. Further, using an AFM tip 

which contained a 5 µm bead was much gentler than using a sharp 10 nm-sized tip, which 

resulted in irregular spreading behavior. 

 Further, our results are consistent with the measurements that cell traction forces 

increase during spreading [157]. Interestingly, another previous study by Gauthier et al. 

(2009) showed that membrane tension decreases during cell spreading, as measured by 

optical tweezers [163]. However, this is not necessarily contradictory to our results. 

Because the thickness of the cell membrane is only on the order of 3-4 nm [164], and we 
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are probing approximately 250 nm into the cell, we are likely measuring the stiffness of 

the cortical actin rather than the cell membrane. Although the cell membrane and cortex 

are physically linked, the cortex likely provides more resistance to the AFM cantilever 

than the cell membrane itself, resulting in a stiffer measurement. Therefore, if it is true 

that the cell membrane softens during spreading, we would not be able to detect it.  

 The “morphology” curve represented by Figure 4.5 may be interpreted as the 

measured stiffness of a cell, given its area, and we can use it to roughly predict a cell’s 

stiffness knowing its area. When we plot the average (area, stiffness; measured separately 

in different cells) of single cells and groups (data from Figures 4.2 and 4.3), the points lie 

on the morphology curve. Interestingly, the data point for single cells lies in the middle of 

the morphology curve, rather than at the upper end where it would be expected to lie for 

fully spread cells. To explain this, it could be possible that cells spread fully by 1 hour, 

but then detach slightly over the course of 16 hours; however, we also cannot fully rule 

out possible effects of the AFM cantilever, though for reasons discussed earlier in this 

section, we believe these to be minimal. 

 Meanwhile, the average (area, stiffness; measured separately in different cells) of 

monolayers (data from Figures 4.2 and 4.3) lies above the curve, indicating that its 

stiffness is higher than we would expect based on its area. Further, when we 

depolymerize actin filaments using a high dose of cytoB, the monolayer is completely 

disrupted, and the (area, stiffness; measured separately in different cells) of the cells 

returns to lie on the morphology curve. If we weaken junctions (e.g. through treatment 

with VE-cadherin antibody or a low dose of cytoB), the monolayer stiffness increases to 
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further from the morphology curve. Therefore, it seems possible that cell-cell contacts 

influence cell mechanical properties, but the form of this influence is currently unknown. 

 To further investigate the effects of cell-cell junction integrity on cell stiffness, we 

first used a titration of cytoB treatment to destabilize the cell-cell junctions to varying 

degrees. At the lowest dose of cytoB, the HUVEC monolayers show small disruption in 

cell-cell adhesions, indicated by tether-like structures at cell junctions in the AFM 

deflection image (white arrowheads in Figure 4.6D) while the F-actin does not appear to 

have changed (Figure 4.7F). Interestingly, the monolayer remains visibly intact, except 

for the tether-like structures, and there is an increase in cell stiffness (Figure 4.6A). This 

could in part be explained by the increased FA size and density with low cytoB treatment 

(Figure 4.7L), which may generate increased tension within the cells, even though we do 

not see differences in F-actin architecture. It could be possible that the low dose of cytoB 

is only affecting the cortical actin along the cell membrane, which might affect the 

overall tension balance in the cell. This may lead the stress fibers to take up some of the 

tension, resulting in increased cell-substrate adhesion and decreased cell-cell adhesion. In 

addition, cytoB is an actin filament capping protein rather than a direct depolymerization 

agent, and at low doses it could have other effects that lead to cell stiffening. Thus, with 

low cytoB treatment, it seems that we disrupt the cell-cell junctions minimally (according 

to AFM images) without completely breaking the cells apart and the stiffness of cells 

within the monolayer approaches that of single cells.  

 Our second approach to destabilize cell junctions was to apply a VE-cadherin 

antibody to the HUVEC monolayers. VE-cadherin is a homophilic protein which 

localizes to cellular junctions and binds to actin, leading to maintenance of tension 
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between cells [124, 165]. Further, VE-cadherin engagement has been demonstrated to 

activate RhoA [156], which would result in an increase in cell tension and stiffness. 

Treatment of EC monolayers with a VE-cadherin antibody decreases cell-cell adhesivity 

and increases monolayer permeability [166-168]. Thus, the treatment weakens cell-cell 

junctions without completely breaking them [168]. We expected that molecular 

engagement of homophilic VE-cadherin might be similar to the presence of leukocytes 

attempting to transmigrate at cell borders and therefore cause rearrangement of VE-

cadherin away from the junction, an effect which has previously been validated [168]. 

We thought that the resulting effect would be similar to cytoB treatment, where the 

monolayers approach the stiffness of single cells. However, VE-cadherin is one of many 

proteins localized at cell-cell junctions, and how the antibody treatment affects the 

localization or bond strength of other homophilic junctional proteins remains unknown.  

 Despite the potential involvement of other junctional proteins, our results agree 

with the above hypothesis – HUVEC monolayers stiffen with VE-cadherin antibody 

treatment (Figure 4.6E). Though we do not observe changes in F-actin structure (Figure 

4.7H), the increased size and density of FAs (Figures 4.7K and 4.7L) may cause the F-

actin tension of cells within the monolayer to increase and approach that of single cells. It 

has been shown that development of cadherin adhesions causes an increase in integrin 

expression [169], as well as recruitment of vinculin to cell-cell adhesions, leading to a 

reduction in vinculin at FAs [170], so the opposite process may also be true, according to 

our results. Also in agreement with our data, de Rooij et al. [171] showed that epithelial 

cell scattering is induced by increased tension on cell-cell junctions (e.g. on stiffer 

surfaces or on extracellular matrices which promote larger FAs), suggesting that the F-
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actin cytoskeleton mediates a cross-talk between cadherins in cell-cell junctions and 

integrins at the cell-substrate interface.  

 Further, we probed the stiffness of single cells treated with a VE-cadherin 

antibody in order to evaluate whether the antibody itself results in any changes in cell 

stiffness, possibly due to signaling events that are not associated with weakened cellular 

junctions. Neither the higher density of FAs (Figure 4.7L) nor the F-actin arrangement 

(Figure 4.7G) can account for the softening of the cells. We would expect the higher 

density of FAs to result in an overall increase in cell tension; however, the softening of 

the cells does not support this idea. While we do not know the specific reason for this 

softening, it seems obvious that VE-cadherin antibody treatment affects single cells 

differently than cells within a monolayer, further suggesting the importance of cell-cell 

adhesions in determining cell stiffness. Localization of VE-cadherin in single cells and 

monolayers is very different, and engagement of VE-cadherin in these two situations 

likely results in differences in activation of signaling pathways. For example, in 

monolayers, VE-cadherin localizes to cell-cell junctions and is physically linked to the 

actin cytoskeleton; this localization occurs when the cell meets a neighboring cell [156]. 

Thus, in single cells, engagement of VE-cadherin may result in biophysical changes 

which are not accounted for in our experiments and which cause softening of the cells. 

 In all experiments we observe that the cell periphery is statistically stiffer than the 

cell body. Previous studies have reported measurements that are both consistent with 

[172] and contradictory to [28] our finding. Possible reasons for disagreement in 

literature over whether the cell body or periphery is stiffer include the following: (a) 

differences in the amount of force applied to the cells and the timescale over which those 
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forces are exerted, both of which influence the measured mechanical properties of a 

viscoelastic material such as a cell; (b) differences in the maximum indentation fitted 

using the Hertz-Sneddon model, since very large indentations likely cause the stiff glass 

substrate to influence elastic measurements; and (c) differences in positioning of the 

AFM cantilever over the cell body, since the nucleus is the stiffest organelle in the cell 

(for review see Dahl et al., 2008 [173]) and is located in what we call the “cell body” 

region. Our force curves are taken by applying a small force, about 2 nN, over the course 

of one second. To eliminate the effects of the glass substrate, we fit our force curves to 

only the first 250 nanometers of indentation, which is small compared to the height of the 

cell, even at the periphery, which is about 600-800 nm in thickness, as measured by AFM 

topographic images.  Further, because we are simultaneously obtaining AFM topographic 

images and force curves, we were able to choose to place the 25 force curve buffers at 

any region on the cell. While we did not know the exact position of the nucleus, our 

measurements show that consistently, the cell body is softer than the periphery, 

suggesting that we are not probing deep enough into the cell to “feel” the nuclear 

stiffness. Probing with deeper indentations into the cell could result in measurement of 

the stiffness of other structures within the cell, such as intermediate filaments, which 

have been shown to be important mechanotransducers within the cell [22, 174]. However, 

it has been shown that F-actin is the main contributor to cell stiffness [175], and that cell 

types with more pronounced F-actin networks are stiffer than cell types with less F-actin 

[176]. In previous reports, increased indentation depths led to two distinct slopes in the 

AFM force-distance curves [35, 177], corresponding to measurement of the stiffness of 

two distinct mechanical regions within the cell. Much further experimentation and 
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analysis are necessary to determine exactly which cellular structures and their 

interactions contribute to cellular stiffness. It would also be useful to identify whether the 

applied forces activate biochemical signaling pathways within the cell, perhaps through 

mechanosensitive transmembrane proteins such as syndecan-4 [178]. 

 To summarize our observations regarding cell spreading, single cell to monolayer 

transition, and the effects of cell-cell adhesions in a monolayer, we created a schematic 

(Figure 4.8). In Figure 4.8A, the organization of cortical actin and stress fibers are based 

on the experimental observations of spreading cells, as previously described [157, 162]. 

According to these reports, a cell begins as a round sphere containing a layer of cortical 

actin. As it touches down onto the substrate and begins to form adhesions, actin 

polymerization initializes at the basal surface, with a layer of cortical actin remaining at 

the apical surface. At this point, there is probably still a low level of tension in the cell 

due to the immaturity of the F-actin filaments. The force of actin polymerization extends 

the periphery of the cell outward, and eventually mature stress fibers form, likely leading 

to an increase in internal tension within the cell. The final spread cell probably consists of 

a dense layer of highly cross-linked stress fibers stretched along the basal surface of the 

cell and an apical layer of cortical actin, which presumably also has undergone an 

increase in tension. We believe that this potential increase in tension of the F-actin 

architecture contributes to the overall increase in cell stiffness and is likely caused by 

myosin II, a motor protein known to cross-link actin filaments and subsequently pull on 

them. Previously, it has been shown that inhibition of myosin II via blebbistatin treatment 

leads to a decrease in cell stiffness also causes cell retraction [179]. This experimental 

observation agrees with our proposed model (Figure 4.8A); if we remove myosin II, the 
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stress fiber cross-links, the cell loses tension, causing relaxation of the actin cytoskeleton 

and a decrease in cell stiffness. Ultimately, in the cell spreading model, this would revert 

the cell to an earlier, softer, spreading state. 

 In Figure 4.8B, the transition from single cell to group to monolayer is 

summarized, according to our observations. Beginning in solitude, the spread cell 

contains a dense network of stress fibers, oriented locally in parallel groups. Eventually, 

more cells join the first cell and form what we refer to as a group, shown here as an island 

of four cells, all with cell-cell adhesions at the interior. While the F-actin architecture 

does not look significantly different from that of the single cell, we propose that the cells 

are extending outward at the periphery through actin polymerization, as evidenced by the 

increased size of both the cells and their FAs, yet they are still visibly connected to each 

other through cell-cell adhesions. The force of extension may generate more tension 

within the cells and thus an increase in cell stiffness. Then, as more and more cells enter 

the group, they begin packing and eventually form a monolayer. Note that in our 

schematic cartoon, the monolayer continues outward infinitely in all directions; pictured 

are cells at the interior. For reference, the compressive forces due to cell packing in the 

epithelial layer during morphogenesis have been measured to be quite sizeable [180, 

181]. The stress fibers are arranged mainly around the periphery of the cell, suggesting 

that rearrangement has occurred due to the cell packing forces, resulting in softer cells. In 

a monolayer, there are less FAs per area, indicating that cell-substrate adhesion has 

decreased, but cell-cell adhesion has probably increased due to the formation of adherens 

junctions. The actin is linked to the cellular junctions through VE-cadherin, and the VE-
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cadherin molecules on neighboring cells link to each other, creating a physical link 

between cells through which force can be transferred. 

 In Figure 4.8C, we propose a sketch which summarizes our observation on the 

effects of applying a VE-cadherin antibody or a low dose of cytoB, treatments which we 

and others have suggested to weaken cell-cell adhesions. Initially, the cell monolayer 

contains some degree of cell-cell and cell-substrate adhesions. Then, upon treatment to 

weaken the cell-cell adhesions, the cell-substrate adhesions become stronger as evidenced 

experimentally by larger and more area-dense FAs. Though we do not observe 

differences in F-actin architecture between the two monolayer states, the increased FAs 

suggest an increase in F-actin tension, resulting in a stiffer monolayer. Mechanically, the 

cell may seek to achieve a balance between cell-cell adhesion through cadherin activation 

and cell-substrate adhesion through integrin activation, and as one adhesion is decreased, 

the other increases [138, 182]. 

____________________ 

Figure 4.8. A schematic summarizes our observations of spreading cells and cells with varying 
degrees of cell-cell contact. (A) Prior to developing adhesions with the underlying substrate, the 
cell contains a layer of cortical actin beneath the membrane. This cortical actin network is soft 
compared with the parallel bundles of F-actin filaments (stress fibers) which polymerize and 
crosslink during spreading. Upon touching down on the substrate, the cell begins to adhere to the 
surface and actin polymerizes, causing the cell to extend outward onto its substrate. When it is 
fully spread, there exists a dense network of stress fibers which extend into the periphery of the 
cell, while a layer of cortical actin still remains. As the stress fibers contract, tension in the entire 
cell, including the cell body region, is increased. This generates the increased stiffness of the cell. 
(B) In the transition from a single cell to a network, the cells develop cell-cell contacts composed 
of numerous adhesion proteins. Because the cells have space around them to move, they likely 
extend outward through actin polymerization, while (visibly) still maintaining cell-cell contacts. 
Increased focal adhesion size at this point suggests that tension in the cell has increased, leading 
to increased cell stiffness. As more and more cells enter the group, they begin packing and 
eventually form a monolayer. Note that in our schematic cartoon, the monolayer continues 
outward infinitely in all directions; pictured are cells at the interior. Here, the stress fibers are 
arranged mainly around the periphery of the cell, suggesting that cell packing forces have caused 
rearrangement of F-actin, possibly resulting in softer cells. In a monolayer, there are less focal 
adhesions per area, indicating that cell-substrate adhesion has decreased, but likely cell-cell 
adhesion has increased. The actin is linked to the cellular junctions through VE-cadherin, and the 
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VE-cadherin molecules on neighboring cells link to each other, creating a physical link between 
cells through which force can be transferred. (C) Once in a monolayer, treatment with VE-
cadherin antibody or a low dose of cytochalasin B presumably weaken cell-cell adhesions. Prior 
to treatment, the cells have some degree of cell-cell adhesion and cell-substrate adhesion. After 
treatment to weaken cell-cell adhesions, the cells develop stronger cell-substrate adhesions (larger 
focal adhesions), leading to increased tension, and thus increased stiffness, in the cells. If the 
monolayer is instead treated with a high dose of cytochalasin B, there is a complete loss of cell-
cell adhesion, dissolution of focal adhesions, and decrease in cell stiffness due to the net 
depolymerization of actin filaments. 
 
____________________ 
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 Previously, it has been shown that matrix properties such as substrate stiffness 

and extracellular matrix (ECM) coating affect cell-substrate adhesion, spreading area, and 

cell stiffness. In particular, cells have been found to spread less on softer surfaces and 

those with a low density of ECM protein at the surface, while cells spread more on stiffer 

surfaces and those with a higher density of ECM protein [54, 56, 60, 157, 183]. Further, 

cell stiffness increases as substrate stiffness increases [73-75] and as ECM density 

increases [184]. Together, these observations agree with our results, where increased 

spreading area correlates with increased cell stiffness. However, many of these 

experiments have been completed on single cells, and the role of substrate stiffness and 

ECM density in influencing cell-cell adhesion strength is only beginning to be 

understood. For example, Califano and Reinhart-King [54] have shown that softer 

surfaces with high ECM density promote formation and maintenance of cell-cell 

adhesions in EC networks, while EC networks do not form on stiffer surfaces with low 

ECM density. Further support of this idea is the work of de Rooj et al. [171], where 

epithelial cell-cell connections are disrupted through scattering on stiff surfaces and on 

those with high ECM density. These results suggest that both mechanical and chemical 

cues are incorporated as cells balance cell-cell and cell-substrate interactions. Further 

experiments where matrix mechanical and chemical properties are manipulated are 

definitely necessary to build upon our understanding of the relationships between cell 

morphology, cell stiffness, and cell-cell and cell-substrate adhesion. 
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4.5 Conclusions 

 In summary, cells within a monolayer are spatially confined due to the presence 

of neighbors and also have close adhesions with these neighbors at the junctions. In 

varying the degree of cell-cell contact in HUVECs (single cells, groups, and monolayers), 

we observe that increased cell stiffness roughly correlates with an increase in cell area. 

Further, we see that HUVECs stiffen as they spread onto a glass substrate. When we treat 

the cells with a low dose of cytoB or VE-cadherin antibody, treatments which 

presumably weaken cell-cell adhesions, we measure that cell-substrate adhesion 

increases, and the stiffness of cells within the monolayer approaches that of single cells. 

Our results together suggest that while morphology can roughly be used to predict cell 

stiffness, cell-cell interactions may play an important role in determining the mechanical 

properties of cells through maintenance of the balance between cell-cell and cell-

substrate interactions. This biophysical balance may be disrupted in biological processes 

such as wound healing, angiogenesis, cancer cell metastasis, and immune cell 

transmigration.  
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5 Endothelial cells experience morphological, dynamical, and 
biomechanical changes in response to TNF-α † 
 
5.1 Introduction 

Tumor necrosis factor-alpha (TNF-α) is a cytokine produced by a variety of 

stromal cells, primarily monocytes and macrophages, as a result of an immune or 

inflammatory response. The vascular endothelium, which normally serves as a protective 

barrier between the blood vessel lumen and nearby tissues, undergoes a series of 

biological changes after binding TNF-α, resulting in increased permeability to both 

macromolecules [185] and immune cells (see Chapter 7). One of the most prominent 

biological changes is the increased expression of selectins, as well as adhesion molecules, 

including intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion 

molecule-1 (VCAM-1), on the surface of the endothelium [186]. These molecules assist 

in the leukocyte adhesion cascade [186], which includes leukocyte migration along and 

transmigration through the vascular endothelium. At the same time, junctional molecules 

such as occludin and VE-cadherin dissociate away from the junctions, leading to 

decreased barrier function [187]. 

 In addition to biological implications of TNF-α signaling, there is also evidence 

that TNF-α affects endothelial cell (EC) morphological and biomechanical properties. In 

this chapter, we utilize a variety of biophysical techniques to understand the links 

between EC morphology, biomechanics, and migratory dynamics after exposure of ECs 

to TNF-α. In this chapter we chose to evaluate single cells in order to simplify the 

____________________ 

† This chapter is in preparation for submission to Journal of Biomechanics, as Stroka, K.M. and H. Aranda-
Espinoza, Endothelial cells experience morphological, dynamical, and biomechanical changes in response 
to TNF- α.  
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system, since, for example, in Chapter 4 we showed that cell-cell adhesion affects EC 

stiffness. These changes in EC properties are key components of the inflammatory 

response, yet are often overshadowed by the biological changes that occur. We show that 

while, on average, TNF-α leads to significant alterations in cell shape and stiffness, there 

is actually a wide distribution of values for each of these properties, indicating a 

heterogeneous effect of TNF-α on cells. We also estimate cellular volume to be 

significantly larger after TNF-α treatment and use this result to connect observations of 

enhanced F-actin and decreased cell stiffness. In addition, our evaluation of migratory 

dynamics demonstrates an inverse correlation between cell aspect ratio and migration 

speed after TNF-α treatment, suggesting that cell shape may be an important functional 

regulator of EC migration during an inflammatory response. Finally, we address the basic 

mechanics of how the reorganization of F-actin filaments occurs; our experiments reveal 

that this occurs through a dynamic shift of existing filaments to an aligned configuration, 

rather than through depolymerization and repolymerization. Together, our results suggest 

a functional link between EC morphology, biomechanics, migration, and cytoskeletal 

dynamics during an inflammatory response. 

 

5.2 Materials and methods 

5.2.1 Cell culture 

 Human umbilical vein ECs (HUVECs) were purchased from Lifeline Cell 

Technology (Walkersville, MD) and cultured as previously described in Section 4.2.1. 

Glass coverslips (22x22 mm, Fisher Scientific, Pittsburgh, PA) were coated with 0.1 

mg/mL fibronectin (Sigma, St. Louis, MO) for 2 hours at room temperature, and 
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HUVECs (1x104 total; passages 2-5) were plated onto the fibronectin-coated glass 

coverslips. Cells were incubated at 37°C, 5% CO2, and 55% humidity overnight for 

approximately 16 hours and were subsequently treated with 25 ng/mL TNF-α or no 

treatment (control).  

 

5.2.2 Cell staining 

HUVECs were fixed in 0.5% glutaraldehyde (Ted Pella, Inc., Redding, CA) for 

10 minutes and washed twice in phosphate buffered saline (PBS). Cells were then 

permeabilized and blocked for nonspecific binding as previously described in Section 

4.2.2. Microtubules were stained by applying an anti-tubulin primary antibody 

(Invitrogen A11126, Carlsbad, CA) at 1:200 dilution (1 µg/mL) for 1 hour, followed by 

an anti-mouse Alexa488 secondary antibody (Invitrogen A11001) at 1:200 dilution (10 

µg/mL). Primary and secondary antibodies were diluted in 2% bovine serum albumin 

with PBS. F-actin and nuclear DNA were stained as previously described in Section 

4.2.2. 

 

5.2.3 Cell transfection 

 Cells were transfected for GFP-actin using an Amaxa Nucleofector (Lonza, 

Walkersville, MD). Primary mammalian endothelial cell solutions (Lonza) were used in 

combination with program A-034 on the Nucleofector. After transfection, cells were 

plated onto fibronectin-coated glass coverslips and allowed to attach overnight. Cells 

were then rinsed and subsequently used in fluorescence timelapse microscopy 

experiments. 
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5.2.4 Atomic force microscopy 

 Young’s moduli of live HUVECs were measured using an atomic force 

microscope (AFM; Agilent Technologies, Santa Clara, CA) as previously described in 

detail in Section 4.2.3. Briefly, a silicon nitride cantilever (Novascan, Ames, IA) with a 

spherical glass SiO2 probe of diameter 5 µm was used to obtain typical force curve 

measurements on live HUVECs. Twenty-five force curves were taken on at least 10 cells 

for each condition (control and TNF-α), for a total of at least 250 force curves for each 

condition. Using a custom-written Matlab (The Mathworks, Natick, MA) program 

(Appendix A), data were fit to the Hertz-Sneddon model [144] for a paraboloid indenter 

[146], as previously described in Section 4.2.3. Cells were probed at both the “cell body” 

(raised portion) and “periphery” (near the base of the cell body, but not at the flattened 

lamellipodia). Indentations were much smaller (<20%) than the total cell height, 

indicating that the stiff glass substrate below the cell did not affect the force curves.  

 To estimate cell volume, the free and open source software Gwyddion was used. 

Cross-sectional plot profiles from AFM topograph images were taken across the major 

and minor axes of the cell (determined by eye). The plot profile was used to determine an 

approximate height of the cell body and periphery regions, as well as the lengths of the 

major and minor axes. Then, the cell volume was approximated by summing the volume 

of two ellipsoids, for the flattened portion of the cell and cell body, using the following 

equation: 

 

where A1 is the length of the minor axis of the flattened region, B1 is the length of the 

major axis of the flattened region, C1 is an estimate of the height of the flattened region, ! 

4
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A2 is the length of the minor axis of the cell body, B2 is the length of the major axis of the 

cell body, and C2 is an estimate of the height of the cell body. 

  

5.2.5 Microscopy 

 Phase contrast image timelapse sequences were taken in HUVEC culture media at 

37°C, 5% CO2, and 55% humidity using an Olympus IX71 (Olympus, Center Valley, 

PA) inverted microscope and a 10x/0.3 NA Ph1 objective. Images were captured using a 

QImaging Retiga-SRV charge-coupled device (CCD) digital camera (QImaging 

Corporation, Surrey, British Columbia, Canada) and IPLab software. Fluorescence 

images of GFP-actin-transfected cells were taken in HUVEC culture media at 37°C, 5% 

CO2, and 55% humidity using an Olympus IX81 inverted microscope and a 60x/1.42 NA 

oil objective. Images were captured using a QImaging Rolera-MGi CCD digital camera 

(QImaging Corporation) and Slidebook software. Confocal images of cells stained for 

tubulin and F-actin were taken at room conditions using an Olympus IX81 scanning disk 

confocal microscope and a 6060x/1.42 NA oil objective. Images were captured using a 

Hammamatsu ORCA-ET CCD camera (Leeds Precision Instruments, Minneapolis, MN) 

using Slidebook software. Cell morphology (area and aspect ratio) were measured using 

ImageJ (NIH, Bethesda, MD). Cell speeds were calculated for each frame of the movie 

by dividing the cell’s displacement by the time step (20 minutes). Then, a moving 

average of the previous 5 timepoints was plotted (as in Figures 5.3 and 5.4) to smooth the 

data. 
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5.3 Results 

5.3.1 TNF-α results in a time-dependent, wide distribution of cell morphology 

 HUVECs were plated onto glass coverslips and given approximately 16 hours to 

spread; subsequently, phase contrast images were taken, and then the cells were treated 

with a physiological concentration of TNF-α (25 ng/mL) in culture medium. Phase 

contrast images were taken at 8 hours and 24 hours following treatment. Prior to TNF-α 

treatment, HUVECs displayed a distribution of areas (Figure 5.1A), while addition of 

TNF-α resulted in a shift of this distribution to the right after 8 hours of treatment (Figure 

5.1B), and further to the right after 24 hours of treatment (Figure 5.1C). Importantly, at 

24 hours, untreated (control) cell area was not different from cell area at 0 hours. 

Interestingly, the width of the distribution of areas became noticeably wider after 24 

hours of TNF-α (Figure 5.1C). The increase in cell area throughout the course of 

treatment is also reflected in the average areas of untreated cells versus cells at 8 hours 

and 24 hours after addition of TNF-α (P<0.001) (Figure 5.1D). 

HUVECs also underwent a change in aspect ratio due to TNF-α treatment. In 

comparison with the distribution of aspect ratios prior to treatment (Figure 5.1E), at 8 

hours after addition of TNF-α, HUVECs were more elongated, as evidenced by the shift 

in the aspect ratio distribution peak to the right (Figure 5.1F). At 24 hours, the 

distribution shifted back to the left, though the distribution peak was still at a 

significantly larger aspect ratio than control cells (Figure 5.1G). The average aspect ratio 

of control cells versus cells at 8 hours and 24 hours after addition of TNF-α follows the 

trend of the distribution peaks and is statistically different (P<0.001) (Figure 5.1H). 
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Figure 5.1. TNF-α induces changes in endothelial cell (EC) morphology. Shown are histograms 
of cellular area for (A) control, (B) 8-hour TNF-α-treated, and (C) 24-hour TNF-α-treated ECs. 
(D) Box and whisker plot indicates that average cellular area increases with TNF-α treatment. 
Also shown are histograms of cellular aspect ratio, calculated by dividing the length of the major 
axis by the minor axis, for (E) control, (F) 8-hour TNF-α-treated, and (G) 24-hour TNF-α-treated 
ECs. Insets in panels E, F, and G are representative images of cells for each condition. Scale bars 
for all insets are 20 µm. (H) Box and whisker plot indicates that average cellular aspect ratio 
increases with TNF-α treatment, with aspect ratios at 8 hours being significantly higher than those 
at 24 hours. *** indicates P<0.001 using Student’s t-test. 
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5.3.2 TNF-α induces changes in cell biomechanical properties 

 Using AFM, we measured the stiffness (Young’s modulus) of HUVECs, both at 

the periphery and cell body regions, as defined in Section 5.2.4. As we previously 

showed in Figure 4.3, the cell body region of control cells was softer than the periphery 

region (Figure 5.2A). The same trend was measured for cells after 24-hour exposure to 

TNF-α (Figure 5.2A). In addition, cells treated with TNF-α were softer than control cells 

at both the cell body and periphery regions (P<0.001) (Figure 5.2A). AFM deflection 

images of control (Figure 5.2B) and TNF-α-treated (Figure 5.2C) cells indicate the 

drastic changes in morphology that occurred in most cells after exposure to TNF-α. We 

also estimated cellular volume from the AFM topographic images, as described in the 

Section 8.2.4. Average estimated cell volume was larger for cells treated with TNF-α for 

24 hours, in comparison with untreated control cells (P<0.05) (Figure 5.2D).  

 

____________________ 

 

Figure 5.2. TNF-α induces changes in EC mechanical properties. (A) Box and whisker plot 
indicates EC stiffness decreases with 24-hour TNF-α treatment, both at the cell body and 
periphery regions, as measured by atomic force microscopy (AFM). *** indicates P<0.001 using 
Student’s t-test. AFM deflection images of  (B) control and (C) 24-hour TNF-α-treated ECs 
display the drastic change in morphology which occurs in most cells upon TNF-α exposure. AFM 
images are 90 µm by 90 µm. (D) Using AFM topographic information, cellular volume was 
estimated by summing the volume of two ellipsoids, for the flattened portion of the cell and cell 
body, using the equation and procedure outlined in Section 8.2.4. Top and side views of the 
relevant dimensions are shown. (E) Estimates of cellular volume for control and 24-hour TNF-α-
treated ECs. * indicates P<0.05 using a Student’s t-test.  
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5.3.3 TNF-α induces inverse correlation between cell aspect ratio and migration 

speed 

 Using phase contrast timelapse microscopy we also evaluated the migratory 

behavior of HUVECs in response to TNF-α. In untreated control cells, aspect ratio and 

migration speed were not necessarily correlated. For example, in the representative cell 

shown in Figure 5.3A, as the time reaches point D on the plot, there is first a peak in 

speed that correlates with a peak in aspect ratio; however, the aspect ratio then drops off 

as the migration speed continues to increase. There is an additional peak in speed at point 

F, but this is not correlated with any changes in aspect ratio. Over the 24-hour period (of 

no treatment), the area of the control cell fluctuates and finally rises slightly. However, 

on average control cells are not larger after 24 hours. The change in aspect ratio at points 

C, D, E, and F on Figure 5.3A correspond to the phase contrast images shown in Figures 

5.3C, 5.3D, 5.3E, and 5.3F, respectively. 

In agreement with the average aspect ratio trends at 8 hours and 24 hours after 

addition of TNF-α (Figure 5.1H), most cells that we tracked individually experienced a 

peak in aspect ratio within the first 15 hours of TNF-α treatment, as in the representative 

cell shown in Figure 5.4A. Interestingly, in TNF-α-treated cells, aspect ratio was usually 

inversely correlated with cell migration speed (Figure 5.4A). For example, migration 

speed falls to the lowest value just before the aspect ratio peaks around point E in Figure 

5.4A. Later, at point F, aspect ratio decreases rapidly as migration speed increases to a 

peak value. In addition, cell area increases steadily over 24 hours of TNF-α treatment 

(Figure 5.4B), which is in agreement with the average cell areas at 8 and 24 hours after 

addition of TNF-α (Figure 5.1D). The change in aspect ratio at points C, D, E, and F on 
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Figure 5.4A correspond to the phase contrast images shown in Figures 5.4C, 5.4D, 5.4E, 

and 5.4F, respectively. 

 

____________________ 

 

 
 
Figure 5.3. Cell speed is not necessarily correlated with aspect ratio in migrating control ECs. 
(A) Cell aspect ratio (primary axis) and speed (secondary axis) are plotted on the same axis for a 
migrating control cell (representative of 5 observed cells). (B) Cell area is plotted as a function of 
time. In panels A and B, time=0 corresponds to ~16 hours after plating cells. In panel A, letters C, 
D, E, and F correspond to timepoints relevant to the images shown in panels (C), (D), (E), and 
(F), respectively. Scale bar is 20 µm for all images. 
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Figure 5.4. Cell speed is inversely correlated with aspect ratio in TNF-α-activated ECs. (A) Cell 
aspect ratio (primary axis) and speed (secondary axis) are plotted on the same axis for a migrating 
TNF-α-activated cell (representative of 5 observed cells). (B) Cell area is plotted as a function of 
time. In panels A and B, time=0 corresponds to ~16 hours after plating cells, which is the time 
when TNF-α was added to the cell media. In panel A, letters C, D, E, and F correspond to 
timepoints relevant to the images shown in panels (C), (D), (E), and (F), respectively. Scale bar is 
20 µm for all images. 
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5.3.4 Actin and microtubule filaments align along cell major axis after TNF-α 

treatment 

 To evaluate the effects of TNF-α on the HUVEC cytoskeletal architecture, we 

stained for F-actin and immunostained for tubulin and captured confocal images of the 

cells. In control ECs, mature stress fibers formed and were arranged in parallel groups 

along the basal surface of the cells (Figure 5.5A). Microtubules were also present and 

were most densely arranged around the nucleus (Figure 5.5A). Activation of the cells 

with TNF-α induced significant changes in both the F-actin and microtubule organization 

of ECs. After 24-hour treatment with TNF-α, most cells’ F-actin was arranged parallel to 

the major (long) axis of the cell (Figure 5.5B) Interestingly, microtubules followed the 

same pattern, as they were also mostly arranged parallel to the major axis of the cell, and 

thus were parallel to the F-actin (Figure 5.5B). 

 

5.3.5 Actin rearranges dynamically upon exposure to TNF-α 

 In addition to a static evaluation of the effects of TNF-α on cytoskeletal 

architecture, we also wished to understand how the transition occurred dynamically. 

Specifically, we aimed to address the question of whether the F-actin reorganization 

involved depolymerization and repolymerization of actin, or whether it was simply a shift 

of existing actin fibers. Thus, we transfected HUVECs for GFP-actin and captured 

fluorescence images over the entire 24-hour period of TNF-α treatment. The timelapse 

sequence in Figure 5.6 indicates the dynamic shift of F-actin inward towards the nucleus 

as it aligns in parallel along the major axis of the cell. 
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Figure 5.5. TNF-α exposure induces F-actin and microtubule alignment along cell major axis. 
ECs stained for F-actin (red) or DNA (blue) and immunostained for tubulin (green) are shown for 
control and 24-hour TNF-α-treated cells. An overlay of the red and green channels is also shown 
for each condition. Scale bar is 20 µm and applies to all images. The cells chosen are 
representative of at least 10 cells imaged. 
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Figure 5.6. TNF-α-induced changes in the F-actin cytoskeleton involve a dynamic shift of 
existing actin filaments. ECs were nucleofected with GFP-actin and fluorescence images were 
captured after addition of TNF-α. Scale bar is 20 µm and applies to all images. T (lower left 
corner of each image) indicates the time (in hours:minutes format) after which TNF-α was added 
to the cell media. 
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5.4 Discussion 

The immune response triggers a complicated sequence of events, one of which is 

release of the cytokine TNF-α from stromal cells such as monocytes and macrophages. 

TNF-α binds to the surface of the endothelium, initiating a signaling cascade that leads to 

drastic changes in junctional protein organization, adhesion molecule expression, 

permeability, morphology, and biomechanics. Here we focus on an often-ignored 

component of the inflammatory response, which is the link between EC morphology, 

biomechanics, migration, and cytoskeletal dynamics. These properties are important 

because, as we will see in Chapter 6, neutrophils are mechanosensitive and the 

biophysical properties of ECs are beginning to be understood as key regulators of the 

inflammatory response (Chapter 2). 

 While increases in cell area and aspect ratio have previously been reported as 

effects of TNF-α exposure [84, 187], here we demonstrate that this response is actually 

fairly heterogeneous, with a wide spread of values for both properties (Fig 5.1). In 

particular, the degree of elongation varies from the box-like morphology of untreated 

cells, to an extremely extended morphology (Figure 5.1F, inset), with aspect ratio around 

10. In addition, the effect is time-dependent, with cell area increasing over 24 hours of 

exposure (Figure 5.1A-D). We also report, for the first time, a trend where aspect ratio 

peaks around 8 hours, and then drops off after 24 hours (Figure 5.1E-H). The dynamic 

shift of the F-actin over the first several hours of TNF-α treatment (Figure 5.6) indicates 

that changes in aspect ratio involve or are even caused by alterations in the cell’s 

mechanical machinery, namely the cytoskeleton. This morphology behavior is also 

related to the migratory dynamics of the cell, as cell speed and aspect ratio are inversely 
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correlated in TNF-α-treated cells (Figure 5.4), but not in control cells (Figure 5.3). We 

suggest that this relationship arises because a high aspect ratio morphology is not 

adequate for efficient migration, and thus an elongated cell must first undergo deadhesion 

at the back end in order to migrate forward.  

In addition, we hypothesized that the increased aspect ratio after 24 hours of TNF-

α exposure is related to cell polarity, and thus we investigated the microtubule 

organization. Immunostaining for tubulin indicates that the microtubule network 

rearranges similar to F-actin, with filaments aligned parallel to the major length of the 

cell (Figure 5.5). Thus, the change in aspect ratio induced by TNF-α exposure can be 

explained by actin and microtubule arrangement and is also directly related to cell 

migration dynamics. 

 Changes in cell morphology and migration are often associated with 

biomechanical alterations. Here we show a decrease in cell stiffness after 24 hours of 

TNF-α exposure (Figure 5.2), which is consistent with previous reports [37]. This is the 

same time at which we observe both F-actin and microtubule cytoskeletal networks 

aligned parallel to the major axis of the cell (Figure 5.5). In addition, TNF-α exposure has 

been found to initiate Rho, ROCK, and myosin light chain kinase (MLCK) signaling 

pathways which are associated with cell contraction [187]. These data seem to be 

contradictory to a decrease in cell stiffness (Figure 5.2), as enhanced stress fibers and 

contractility are generally associated with increased cell stiffness [24]. However, we must 

also keep in mind that force measurements made by AFM utilize an indentation that is 

very small compared to the total height of the cell, and thus the Young’s modulus 

measurements which we report are not necessarily reflective of the basal surface of the 
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cell, where the stress fibers are localized. Rather, our measurements are reflective of cell 

cytoplasmic or cortical actin stiffness. Thus, the significant increase in estimated cellular 

volume with TNF-α treatment (Figure 5.2E) can explain the decrease in cell stiffness, 

despite changes in F-actin that might suggest opposite effects on stiffness.  

 To our knowledge, we are the first to report an increase in EC volume after 24 

hours of TNF-α treatment. An increase in stress fiber formation is a key characteristic of 

TNF-α treatment [187], as mentioned above. Likely, this event is accompanied by an 

influx of water and ions, and this could lead to changes in pressure that affect cell 

volume. Thus, while interesting, it is not surprising that TNF-α induces changes in 

overall cellular volume. 

  

5.5 Conclusions 

In conclusion, in this chapter we demonstrate that increases in cellular area, aspect 

ratio, and volume due to TNF-α exposure in single ECs are intrinsically related to cellular 

stiffness, migration behavior, and cytoskeletal organization and dynamics. Previously, 

much attention has been placed on the biological signaling due to cytokine exposure, 

though little work has focused on the biomechanics and dynamics of ECs in response to 

TNF-α. These biophysical properties of the vascular endothelium are key aspects of the 

immune response and are therefore likely to affect the efficiency of the leukocyte 

adhesion cascade. As one focus of Chapter 7, we will evaluate the effects of TNF-α on 

the biophysical properties of a confluent EC monolayer, and relate these changes to 

leukocyte migration and transmigration. 
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6 Neutrophils Display Biphasic Relationship between 
Migration and Substrate Stiffness† 
 
6.1 Introduction 

Cell migration has been established as essential for morphogenesis [188] and 

wound healing [189], as well as for tumor metastasis and angiogenesis [190]. Neutrophils 

are one type of migrating cell in the body’s innate immune system and are the first line of 

defense against inflammation or infection. Infection in the body causes release of 

chemoattractant signals into the bloodstream and activation of endothelial cells (ECs) 

[49]. The neutrophil tethers to the EC wall through the cell adhesion molecules P-selectin 

and L-selectin, and then rolls and adheres firmly to the ECs as integrins on the neutrophil 

surface become activated [191]. Then, the neutrophil transmigrates through the EC wall 

into the intima of the blood vessel, where chemotaxis leads it to the source of infection. 

Finally, the neutrophil engulfs the infectious material through phagocytosis [49]. This 

entire process is often referred to as the leukocyte adhesion cascade. 

 Our experiments investigate neutrophil chemokinesis, or motility in a uniform 

concentration of chemoattractant. Neutrophils undergo chemokinesis during the middle 

phases of the leukocyte adhesion cascade, after they have attached and adhered to the EC 

wall. It has been reported that this stage of locomotion is necessary for transmigration to 

occur in monocytes [192]. Further, if the cells cannot transmigrate, they cannot travel to 

the source of infection and carry out their innate function. Because migration along the 

____________________ 

† This chapter was originally published as Stroka, K.M. and H. Aranda-Espinoza (2009). Neutrophils 
display biphasic relationship between migration and substrate stiffness. Cell Motility and the Cytoskeleton 
66(6), 328-341. Permission was obtained from the publisher to use this material in the current dissertation. 
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EC wall is such an integral part of the leukocyte adhesion cascade, it is necessary to 

understand what factors influence motility during this stage. 

Extensive work exists on the effects of adhesion proteins and integrin-ligand 

interactions on neutrophil motility [193-196]. Some work exists on the effects of shear 

stress on neutrophil adhesion and motility [196]. However, little is known about how 

neutrophil motility is affected by the stiffness of their physical environment. Studying 

these mechanical effects is important because often, changes in tissue stiffness indicate 

pathological conditions, such as in atherosclerosis and cancer. In order to develop new 

treatments for these conditions, a better understanding of how cells migrate on varying 

mechanical substrates is necessary. 

EC stiffness is influenced by several known factors, as reviewed in Table 2.1. For 

example, ECs stiffen under shear stress as a function of the time exposed to and 

magnitude of the shear stress [28, 29]. Depleting the cholesterol from control bovine 

aortic ECs increases membrane stiffness, while enriching the cells with cholesterol does 

not affect the membrane stiffness [31]. Furthermore, cells can have a heterogeneous 

mechanical surface. For example, atomic force microscopy (AFM) experiments have 

revealed that the Young’s modulus of human umbilical vein ECs ranges from 1.4 kPa 

near the edge of the cell to 6.8 kPa over the nucleus of the cell [41], while in bovine 

pulmonary aortic ECs the Young’s modulus ranges from 0.2 to 2 kPa [42]. For 

comparison, by AFM measurements, cardiac cells have a stiffness of 100.3 kPa, while 

skeletal muscle cells are 24.7 kPa [41]. Therefore, there is heterogeneity in stiffness 

between different cell types and also within the same cell depending on location. Here, 

we are interested in how the mechanical properties of the substrate affect the immune 
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response, in particular, the morphology and motility of neutrophils. In our experiments, 

we are able to vary the stiffness of the substrate using polyacrylamide gels with different 

concentrations of crosslinker and thus use these gels to investigate neutrophil motility on 

surfaces of varying stiffness. 

Previous research has shown that many types of cells respond to changes in 

substrate stiffness. For example, rat kidney epithelial cells, smooth muscle cells, and 3T3 

fibroblasts spread less, exert smaller traction forces, and also display increased motility 

on flexible polyacrylamide substrates, as compared to stiffer substrates [25, 56, 61]. 

Bovine aortic endothelial cells (BAECs) also show increased spreading areas and 

spreading rates, as well as upregulation of α5 integrins on stiffer gels [56]. Substrate 

stiffness also affects neurite outgrowth and branching in neurons [62, 63], and directs 

differentiation of stem cells [64]. However, in contrast to other cell types, it has been 

reported that neutrophil perimeter after activation remains constant regardless of substrate 

stiffness, from surfaces as soft as 2 Pa to glass [56]. Results in this chapter contradict this 

report; here we show that substrate stiffness affects neutrophil morphology, spreading 

area, and motility. In particular, we demonstrate that there exists a robust biphasic 

relationship between the track speed and substrate stiffness. The stiffness of maximal 

motility increases when the ligand concentration on the surface of the gel is decreased. 

This biphasic behavior with substrate stiffness is consistent with results previously 

published for smooth muscle cells [197]. 
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6.2 Materials and methods 

6.2.1 Preparation of polyacrylamide gels 

 Polyacrylamide gels were attached to glass coverslips by a method previously 

described [198]. In brief, 22x22 mm glass coverslips (Fisher Scientific, Pittsburgh, PA) 

were flamed in a Bunsen burner, soaked in 0.1 M NaOH (Fisher Scientific, Pittsburgh, 

PA) and air-dried. The coverslips were coated with 3-aminopropyltrimethoxy silane 

(Sigma, St. Louis, MO) and fixed with 0.5% glutaraldehyde (Sigma, St. Louis, MO) in 

phosphate buffered saline (PBS). Polyacrylamide gels were prepared with varying 

concentrations of acrylamide (40% Acryl; Bio-Rad, Hercules, CA) and bisacrylamide 

(2% Bis; Bio-Rad, Hercules, CA) to vary stiffness. Concentrations used included 8% 

acrylamide + 0.2% bis, 8% acrylamide + 0.1% bis, 8% acrylamide + 0.07% bis, 8% 

acrylamide + 0.04% bis, and 5% acrylamide + 0.05% bis. Pre-gel solutions were 

degassed for 20 minutes in a vacuum chamber and polymerization was initiated with 10% 

ammonium persulfate (APS; Bio-Rad, Hercules, CA) and catalyzed with N,N,N’,N’-

Tetramethylethlenediamine (TEMED; Bio-Rad, Hercules, CA). 25 µL of gel solution was 

placed onto each activated coverslip and another coverslip (22 mm diameter; Fisher 

Scientific, Pittsburgh, PA) created a sandwich over the drop. The coverslip-gel assembly 

was inverted during polymerization. After polymerization the top coverslip was removed 

and gels (~80 µm thick, as measured by microscopy) were rinsed with 50 mM HEPES 

(Fisher Scientific, Pittsburgh, PA). 200 µL of 0.5 mg/mL sulfosucinimidyl 6 (4’-azido-2’-

nitrophenyl-amino) hexanoate (sulfo-SANPAH; Pierce, Rockford, IL) in 50 mM HEPES, 

pH 8.5, with 0.05% dimethyl sulfoxide (DMSO; Fisher Scientific, Pittsburgh, PA) were 

pipetted onto the surface of each gel and exposed to UV light at a distance of 5 inches for 



www.manaraa.com

  100 

10 minutes. The sulfo-SANPAH was removed and the photoactivation procedure was 

repeated. Gels were rinsed twice with 50 mM HEPES, and 300 µL of either 10 µg/mL, 

100 µg/mL, or 500 µg/mL fibronectin (FN; Sigma, St. Louis, MO) was placed onto the 

gels and allowed to react for 4 hours at room temperature. Substrates were then rinsed 3 

times with PBS.  

 

6.2.2 Determination of Young’s moduli of gels 

 Bulk mechanical properties of the polyacrylamide gels were investigated using 

the Q-800 Dynamic Mechanical Analyzer (DMA; TA Instruments, New Castle, DE) and 

Q Series Explorer software. Bulk samples of height were cyclically compressed at 1 Hz 

to a strain of 1%. In this strain range the polyacrylamide gels are linearly elastic, with a 

linear stress-strain relationship and Young’s modulus as the slope. 4-5 different samples 

of each gel were tested. This analysis resulted in values for Young’s modulus of 2.8±0.5 

kPa (5% acrylamide + 0.05% bis), 3.7±0.9 kPa (8% acrylamide + 0.04% bis), 5.2±1.6 

kPa (8% acrylamide + 0.07% bis), 6.6±2.4 kPa (8% acrylamide + 0.1% bis), and 

13.2±2.0 kPa (8% acrylamide + 0.2% bis). These values are consistent with previously 

published Young’s moduli for gels composed of similar concentrations of acrylamide and 

bis [199].  

 

6.2.3 Characterization of surface-bound fibronectin on gel surface 

Polyacrylamide gels were coated with fibronectin, as discussed above. 2% bovine 

serum albumin (BSA; Sigma, St. Louis, MO) in PBS was applied to the gels for 30 

minutes at room temperature. Gels were then incubated with 200 µL of 100 µg/mL 
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primary anti-fibronectin antibody (Abcam, Cambridge, MA) in 2% BSA+PBS for 1 hour 

at room temperature in a humidity chamber. Gels were washed 3 times in PBS, for 5 

minutes each on a rocker. Gels were then incubated with 200 µL of a 1:100 dilution of 

the IgG antibody conjugated to Texas Red fluorescent probe (Abcam, Cambridge, MA) 

in 2% BSA+PBS for 1 hour at room temperature in a humidity chamber. Gels were 

washed 3 times in PBS, for 5 minutes each on a rocker. Fluorescence images were taken 

of the gels and relative intensity levels were quantified using ImageJ software. 

Polyacrylamide gels without protein and immunostained in the same way were used as a 

control. 

 

6.2.4 Neutrophil isolation 

 Blood was taken from healthy human donors into BD Vacutainers containing 

K3EDTA (Becktin Dickenson, Franklin Lakes, NJ) at the University of Maryland Health 

Center. 7 mL of blood were layered onto 4 mL of Polymorphprep media (AXIS-SHIELD 

PoC, Dundee, Scotland) and centrifuged at 23°C, 500g for 1 hour. Neutrophils were 

washed once in HBSS and centrifuged at 4°C, 350g for 10 minutes. Neutrophils were 

then resuspended in a buffer solution containing 10 mM HEPES and 0.1% human serum 

albumin (HSA; Sigma, St. Louis, MO) in HBSS. Methods were approved by the 

University of Maryland Institutional Review Board, and donors gave written consent. 

 

6.2.5 Chemokinesis experiments 

For each gel, a thin strip of vacuum grease was applied around a hole bored out of 

a small plastic Petri dish (Nunc, Rochester, NY) and the coverslip with gel attached was 
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pressed into the dish over the vacuum grease, forming a water-tight seal to contain liquid. 

Substrates were stored at 4°C in Hanks Balanced Salt Solution (HBSS; Gibco, Carlsbad, 

CA) overnight and sterilized under ultraviolet light for 15 minutes prior to plating cells.  

A total of approximately 105 neutrophils in buffer solution were plated onto gels 

with 2 mM MgCl2 (Sigma, St. Louis, MO), 1.5 mM CaCl2 (Acros Organics, Morris 

Plains, NJ) for a total volume of 2 mL. Neutrophils were incubated for 5 minutes at 37°C, 

during which neutrophils remained passive. Neutrophils on gels were stimulated with 10 

nM N-Formyl-Met-Leu-Phe (fMLF; Fisher Scientific, Pittsburgh, PA). Timelapse 

experiments were completed at 37°C using an Olympus IX71 inverted microscope. 

Images were captured every 10 seconds for a period of 30 minutes with a QImaging 

Retiga-SRV charge-coupled device digital camera (QImaging corporation, Surrey, British 

Columbia, Canada) at a magnification of 20X. All experiments were performed within 8 

hours of obtaining human blood. 

 

6.2.6 Quantification of motility 

 Centers of mass (in x,y coordinates) and areas of neutrophils were tracked 

through timelapse image sequences using ImageJ analysis software (National Institutes of 

Health, Bethesda, MD). Cell outlines were traced by hand in ImageJ for all images in 

each sequence. To obtain an estimate of the error associated with tracing cells by hand, 

the same cell was traced by hand 10 times each by three different people. The three 

resulting measurements for this particular cell’s area (average ± standard deviation) were 

258±4 µm2, 259±2 µm2, and 258±4 µm2. For the same cell, the standard deviation 

associated with the centroid position measurements was about 0.03 µm using the same 



www.manaraa.com

  103 

method. Both Excel (Microsoft Corporation, Redmond, WA) and a self-written Matlab 

(The Math Works, Inc., Natick, MA) program (Appendix B) were used to quantify the 

spreading area, speed, and diffusion coefficient of neutrophils. The “overall” area of a 

given cell was time-averaged for all images in a timelapse sequence. Areas for each 5-

minute time interval were also time-averaged (for 0-5 minutes, 5-10 minutes, 10-15 

minutes, etc.).  

Neutrophil track speed was calculated for each cell by time-averaging 

displacements of centroids for each time interval in the sequence and dividing by the time 

interval (Figure 6.1). Mean areas and speeds for 8-10 cells were averaged to give the total 

mean area or speed for one experiment. Experiments were repeated 3 times. Each 

independent experiment used blood from a different donor. Statistical significance was 

determined using a Student’s t-test. Reported values are the averages of these three 

experiments, plus/minus the standard error.  

Diffusion coefficients were calculated in the following way. To compute the 

sliding average of mean-squared displacements (MSD), the square of the distance 

traveled in the x-direction plus the square of the distance traveled in the y-direction was 

time-averaged for each time step λ and also for every time step n*λ , for every n up to the 

total number of time steps. This analysis was repeated for each neutrophil. The MSDs for 

every λ were averaged over all cells and MSD versus time was plotted. Neutrophil 

motility can be approximated as a nonlinear random walk according to the Langevin-type 

equation,  

r2 = 4D (t – τ (1 - e-t/τ), 
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where r2 is the two-dimensional mean-squared displacement, D is the random motility 

coefficient, t is time, and τ is the persistence time [200]. The linear portion of MSD 

versus time can be more simply fit to the equation r2 = 4Dt, to obtain the random motility 

coefficient, D, which was confirmed to be of similar value to that obtained using the full 

Langevin equation. The exponent, α, in the power law relationship between mean square 

displacement and time (

€ 

r2 ∝ tα) was determined by the slope of the natural log-log plot 

of r2 versus t. Values of mean area (A), track speed (v), random motility coefficient (D), 

and α were averaged over 3 independent experiments to give the mean values and 

standard errors presented in this manuscript.  

Finally, turning angles of neutrophils were calculated in the following way 

(Figure 6.1). The displacements of neutrophils between adjacent time steps, λn and λn+1, 

were used as vectors  and  and the angle between the vectors was computed using 

 
  

€ 

cos θn( ) =

 
d n ⋅
 
d n +1 

d n
 
d n +1

 . 

The distribution of angles from three independent experiments for each substrate stiffness 

was used to form histograms.  

 

6.3 Results 

6.3.1 Fibronectin coating is independent of substrate stiffness 

 Immunostaining of the polyacrylamide gels with a primary anti-fibronectin 

antibody and secondary IgG antibody conjugated to Texas Red revealed similar 

fluorescence intensities on polyacrylamide gels with 100 µg/mL fibronectin. The 5% 

acrylamide gel was also coated with 500 µg/mL fibronectin and immunostained as 
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described above, resulting in a similar fluroscence intensity to the 8% acrylamide gels 

coated with 100 µg/mL fibronectin. 

 

____________________ 
 

 

 
 
Figure 6.1. Method for quantification of neutrophil motility from a series of timelapse images. 
Positions of neutrophils are indicated in white, while their displacements from frame to frame are 
indicated with black arrows. The neutrophil begins at position (x0,y0) = (0,0). The orientation of 
the coordinate system is shown in the upper right hand corner of the image. The first 
displacement takes place in the first timestep, λ1, and the neutrophil travels a distance during 

this time to end at position (x1,y1). Then, the neutrophil makes a turn at an angle of θ1 from its 
original path, and during the second timestep λ2, travels a distance  to its second position 

(x2,y2). This analysis continues through all frames of the sequence, as the neutrophil travels from 
position to position over the gel. Then, the speed of the neutrophil is calculated as the average 

magnitude of N displacements divided by the timestep: , where 
  

€ 

d =
1
N

 
d n

n =1

N

∑ . The 

angle of turning, θn, is calculated using
  

€ 

cos θn( ) =

 
d n ⋅
 
d n +1 

d n
 
d n +1

. Because cos(θ) is an even function, 

no distinction is made between left and right turns.   
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6.3.2 Neutrophil morphology depends on substrate stiffness 

Neutrophils were isolated as explained in Section 6.2.4, plated on fibronectin-

coated polyacrylamide gels, and activated with fMLF. Simple inspection of the 

neutrophils after activation indicates dramatic morphological differences on the gels of 

varying stiffness. We find that neutrophils on 13 kPa gels spread more than those on 4 

kPa or 3 kPa, where the neutrophils are less spread (Figure 6.2). On 13 kPa, the cells are 

flattened on the gel substrate such that the nucleus and leading edge of the cell both 

appear dark in phase contrast microscopy images in comparison with the rest of the cell 

(Figure 6.2). Neutrophils on 4 kPa and 3 kPa appear brighter because the cell height is 

greater due to less adhesion and thus light is scattered by the cell. The presence of small 

protrusions over the body of the cells indicates that the cells are activated. Over the 30 

minute timelapse, an average of 79% of cells display the well-spread isotropic 

characteristic morphology on 13 kPa, while only 19% and 8% display this well-spread 

morphology on 4 kPa and 3 kPa gels, respectively (Figure 6.3). Note that “well-spread” is 

defined here as having an area greater than about 120 µm2. This was chosen considering 

that a passive neutrophil has a projected area of about 75 µm2, while cells spread on the 

stiffest gel have an area of about 360 µm2, at their largest spreading area (Figure 6.4A). 

Thus, an area of 120 µm2 clearly separates characteristic morphologies on 4 kPa and 13 

kPa. It is at the earlier time points when a small percentage of neutrophils are well-spread 

on the softer gels (Figure 6.3). A maximum percentage of cells are spread on all 

stiffnesses around 7.5 minutes. Following this time point, the cells on 4 kPa and 3 kPa 

begin to retract and display the morphology characteristic on 4 kPa or 3 kPa gels. Once 

retracted, these cells do not spread again. Note also that t=0 indicates the start of the 
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timelapse capture; this is within 30 seconds of fMLF addition. At this point, neutrophils 

have already begun to spread. Figure 6.3 indicates data for neutrophils spreading on 100 

µg/mL fibronectin; similar spreading patterns were observed for neutrophils spreading on 

10 µg/mL fibronectin. 

Quantitatively, the mean spreading area (A) of neutrophils averaged over 30 

minutes on 13 kPa (100 µg/mL fibronectin) is 310±70 µm2, which is larger than on both 

the 3 kPa and 4 kPa gels (P<0.05), where the mean spreading areas are 70±20 µm2 and 

79±2 µm2, respectively (Figure 6.4A) (see Section 6.2.6 for how areas were calculated). 

When averaged over 30 minutes, the area on 3 kPa and 4 kPa are not statistically 

different (P>0.05). The time evolution of spreading area in 5 minute intervals indicates 

that the average area on 13 kPa decreases throughout the 30 minute timelapse, but 

remains statistically larger than the areas on 4 kPa and 3 kPa at all time points (P<0.05). 

At t = 15, 20, and 25 minutes the area on 4 kPa is statistically larger than on 3 kPa 

(P<0.05). Figure 6.4B indicates the spreading area versus time for one characteristic cell 

on each of 3 kPa and 13 kPa gels, as well as two cells on 4 kPa. Two area versus time 

plots are included for 4 kPa to display a cell whose area remains fairly constant [4 kPa 

(1)] and also a cell which initially is well-spread, but then retracts and remains unspread 

for the remainder of the timelapse [4 kPa (2)]. The morphology through time for these 

same 4 cells is shown in Figure 6.4C, in 5 minute intervals. Neutrophils on 10 µg/mL 

also show an increase in area as stiffness increases. 
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Figure 6.2. Effects of substrate stiffness on neutrophil morphology. Phase contrast images show 
cells exhibiting characteristic morphologies on (A) 13 kPa, (B) 4 kPa, and (B) 3 kPa fibronectin-
coated (100 µg/mL) polyacrylamide gels after activation with a uniform concentration of 10 nM 
fMLF. Insets show magnified morphologies for each stiffness. The morphologies displayed in the 
insets indicate the morphologies of the majority of the cells on each gel. White arrows point to 
red blood cells. Neutrophils on 13 kPa (A) appear flattened and well-spread, with darker areas of 
the cells indicating the nucleus and leading edge. Neutrophils on 4 kPa (B) appear brighter 
because the cell height is greater than on 13 kPa since the cell is not well-spread, and thus light is 
scattered by the cell. The presence of small protrusions over the body of the cell indicates that the 
cell is activated. Black arrows point to examples of neutrophils on 4 kPa which initially spread 
similar to the characteristic morphology on 13 kPa gels. However, by t=20 minutes into the 
timelapse, the majority of these cells retract into the morphology characteristic on 4 kPa (see also 
Figure 6.3). Neutrophils on 3 kPa (C) appear similar to those on 4 kPa; however, though they are 
activated, neutrophils on 3 kPa do not attach, as observed in timelapse movies. As on 4 kPa, the 
presence of small protrusions over the body of the cell indicates that the cell is activated. 
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Figure 6.3. Percent of cells displaying well-spread morphology (characteristic of cells on 13 kPa 
polyacrylamide gel coated with fibronectin) on each of 13 kPa (N=77 cells on 4 gels from 3 blood 
donors), 4 kPa (N=134 cells on 6 gels from 3 blood donors), and 3 kPa (N=202 cells on 6 gels 
from 3 blood donors) in 2.5 minute time intervals after activation with a uniform concentration of 
10 nM fMLF. The majority of neutrophils on 13 kPa spread initially and stay well-spread though 
the 30 minute timelapse. On 4 kPa and 3 kPa, some cells appear well-spread initially, but the 
majority of these cells retract by t=20 minutes and then stay unspread for the remainder of the 
timelapse. Results are shown for 100 µg/mL fibronectin, and similar spreading patterns are 
noticed for neutrophils on 10 µg/mL. 
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Figure 6.4.  Effects of substrate stiffness on neutrophil area. (A) Time-averaged spreading area of 
neutrophils on fibronectin-coated polyacrylamide gels of varying stiffness over three independent 
experiments under control conditions during a chemokinetic response to 10 nM fMLF. Areas 
labeled “5 minutes” were averaged over 0-5 minutes. Areas labeled “10 minutes” were averaged 
5-10 minutes, and so on. “Overall” areas were averaged over the entire 30 minute timelapse. Bars 
indicate mean of three experiments using different blood donors, and error bars represent standard 
error of three experiments. Asterisks indicate significance at 95% confidence using Student’s t-
test. (B) Spreading area versus time for one neutrophil on each of 13 kPa, 4 kPa, and 3 kPa 
fibronectin-coated (100 µg/mL) polyacrylamide gels during a chemokinetic response to 10 nM 
fMLF under control conditions. 4 kPa (1) data series shows area versus time for a neutrophil 
which displays unspread morphology characteristic of 4 kPa during the entire 15 minute time 
period. 4 kPa (2) data series shows area versus time for a neutrophil which initially spreads as on 
13 kPa, but then retracts at t=7 minutes (see black arrows on Figure 6.2) and does not spread out 
again. Note also that t=0 corresponds to the beginning of the timelapse capture; this is within 30 
seconds of adding fMLF.  (C) Corresponding morphologies of single cells, for which the area 
versus time data is given in panel B. Images are shown in 5 minute time intervals. All images 
represent 40x40 µm. 



www.manaraa.com

  111 

6.3.3 Neutrophil migration speed is biphasic with substrate stiffness 

The effect of time interval choice on neutrophil track speed was investigated 

(Figures 6.5A and 6.5B). As time interval (λ) increases from 10 seconds to 2 minutes, 

track speed decreases for neutrophils migrating on all stiffnesses, though the decrease in 

track speed is most apparent on 3 kPa gels, where cells do not migrate, but rather move 

randomly in place due to Brownian motion and changes in cell shape. Track speeds on 13 

kPa (10 µg/mL fibronectin) are statistically different from speeds on all other stiffness for 

all λ (indicated by gray circles surrounding the data points in Figure 6.5A; P<0.05). Track 

speeds on 3 kPa (10 µg/mL fibronectin) become statistically different from speeds on 

both 5 kPa and 7 kPa at λ=50 seconds (Figure 6.A), but are not statistically different from 

speeds on 4 kPa at any interval. Track speeds on 13 kPa and 3 kPa (100 µg/mL) are 

statistically different from values on 4 kPa for all λ (Figure 6.5B).  

Figure 6.5C shows the track speeds for a time interval of λ=10 seconds, while 

Figure 6.5D shows the track speeds for a time interval of λ=60 seconds. Choosing a time 

interval of 10 seconds does not reveal biphasic behavior between substrate stiffness and 

track speed for 10 µg/mL fibronectin (Figure 6.5C), but at λ=60 seconds the relationship 

is statistically biphasic (Figure 6.5D). Track speeds on 100 µg/mL are statistically 

biphasic for all time intervals, including 60 seconds (Figures 6.5B, 6.5C, and 6.5D).  
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Figure 6.5. Neutrophil speed depends on substrate stiffness and amount of surface-bound 
fibronectin. (A and B) Average track speed of neutrophils versus time interval used for the 
calculation. Time intervals were varied from 10 seconds to 2 minutes, in 10 second time steps to 
investigate the effect of choosing a time interval on the track speed. Panel A indicates data for 10 
µg/mL fibronectin (FN), while panel B indicates data for 100 µg/mL fibronectin. Data points 
circled in gray are statistically different from the maximum value at that time interval (p<0.05). 
(C and D) Track speed, using (C) time interval λ=10 seconds and (D) time interval λ=60 
seconds, of neutrophils on fibronectin-coated (10 µg/mL and 100 µg/mL) polyacrylamide gels of 
varying stiffness under control conditions during a chemokinetic response to 10 nM fMLF. In 
panels A and B, bars indicate mean of three experiments using different blood donors, and error 
bars represent standard error of three experiments. Asterisks indicate statistical difference from 
maximum value at 95% confidence using Student’s t-test.  
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6.3.4 Optimal stiffness for migration depends on amount of surface-bound 

fibronectin 

Further, the optimal stiffness depends on ligand concentration. At 10 µg/mL 

fibronectin, the optimal stiffness is around 7 kPa (though 5 kPa is also statistically 

different from both 3 kPa and 13 kPa), while at 100 µg/mL, the optimal stiffness is lower, 

at 4 kPa (Figure 6.5D). For λ=60 seconds, values for mean track speeds of neutrophils on 

13 kPa, 4 kPa, and 3 kPa (100 µg/mL) are 3.76±0.09 µm/min, 6.9±0.6 µm/min, and 

3.2±0.4 µm/min, respectively. Values for mean track speeds on 13 kPa, 7 kPa, 5 kPa, 4 

kPa, and 3 kPa (10 µg/mL) are 1.83±0.16 µm/min, 4.5±2.0 µm/min, 4.2±1.1 µm/min, 

3.8±0.5 µm/min, and 3.2±0.4 µm/min, respectively. There is a statistical difference 

(P<0.05) between the maximum values on 4 kPa (100 µg/mL) and 7 kPa (10 µg/mL). 

Typical trajectories for neutrophils on polyacrylamide gels of varying stiffness are 

depicted in Figure 6.6.  

____________________ 

 

 

Figure 6.6. Typical trajectories of neutrophils on fibronectin-coated polyacrylamide gels 
following a chemokinetic response to 10 nM fMLF. Shown are trajectories from 20-30 cells, 
overlapped and with the starting positions centered at the origin. All plots range from (-100, 100) 
µm on both the x- and y- axes. Black dots indicate the ending position of the cell. (A-E) 
Trajectories on 10 µg/mL fibronectin. (F-H) Trajectories on 100 µg/mL fibronectin. (A and F) 3 
kPa. (B and G) 4 kPa. (C) 5 kPa. (D) 7 kPa. (E and H) 13 kPa. 
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For comparison, previous studies on glass have reported the speed of neutrophils 

to be 15.3 µm/min [201] and 30 µm/min [202], though the protein coating conditions in 

those experiments vary from each other and from those in the present study. The speeds 

of neutrophils on our flexible gels are comparable to speeds found in more recent 

experiments, where neutrophil migration velocities were around 8 µm/min on plastic 

substrates coated with varying concentrations of E-selectin, platelet endothelial cell 

adhesion molecule type 1 (PECAM-1), and intercellular adhesion molecule type 1 

(ICAM-1) [196]. Because glass susbtrates are not physiologically relevant, we chose to 

perform our experiments on flexible polyacrylamide gels in the range of stiffness of 

endothelial cells, which has been reported as 0.2 to 6.8 kPa [41, 42]. Thus, 13 kPa is a 

relatively stiff substrate. However, we expect that neutrophil speeds will be very low on 

gels that are even stiffer than those used in this study; this may be an interesting area for 

future study.  

 

6.3.5 Random motility coefficient depends on substrate stiffness 

The random motility (diffusion) coefficients of neutrophils are 0.49±0.15 µm2/s, 

1.9±0.3 µm2/s, and 0.11±0.08 µm2/s on 13 kPa, 4 kPa, and 3 kPa polyacrylamide gels 

(100 µg/mL fibronectin), respectively. These values were calculated from the slope of the 

linear portion of plots of mean square displacement (MSD) versus time (Figure 6.7A). 

The resulting values for random motility coefficient are similar to those obtained using 

the full Langevin equation (see Section 6.2.6). The random motility coefficient is 

statistically smaller for neutrophils on 13 kPa and 3 kPa gels as compared to neutrophils 

migrating on the 4 kPa gel (Figure 6.7B) (P<0.05). There is no difference between 
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random motility coefficients on 13 kPa and on 3 kPa (P>0.05). Thus, neutrophils also 

display a biphasic behavior between the random motility coefficient and substrate 

stiffness, where about 4 kPa is the stiffness for optimal migration on 100 µg/mL 

fibronectin. On substrates coated with 10 µg/mL fibronectin, the random motility 

coefficient is 0.20±0.06 µm2/sec, 0.39±0.24 µm2/sec, 0.39±0.15 µm2/sec, 0.32±0.12 

µm2/sec, and 0.07±0.01 µm2/sec on 13 kPa, 7 kPa, 5 kPa, 4 kPa, and 3kPa, respectively, 

indicating that neutrophils diffuse most on 7 kpa or 5 kPa (Figure 6.7B). The maximum 

random motility coefficient on 10 µg/mL fibronectin (7 kPa) is statistically lower 

(P<0.05) than the maximum random motility coefficient on 100 µg/mL fibronectin (4 

kPa).  

For comparison, previous studies on glass have reported the diffusion coefficient 

of neutrophils to be 0.14 µm2/sec [201] and 4 µm2/s [202], though the protein coating 

conditions in those experiments vary from those in the present study. More recent 

experiments have found the diffusion coefficient of neutrophils on plastic substrates with 

varying concentrations of E-selectin, PECAM-1, and ICAM-1 to be in the range of about 

0.25 to 1 µm2/sec [196]. As previously mentioned, for the current study we focused on 

substrate stiffnesses in the range of stiffness of ECs, and comparatively, 13 kPa is a 

“stiff” substrate. We expect that neutrophil random motility coefficients on glass will be 

even lower than on the stiffest gels used in the current study. 
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Figure 6.7. Random motility coefficient is biphasic with substrate stiffness. (A) Mean square 
displacement (MSD) versus time for neutrophils migrating on 100 µg/mL fibronectin-coated gels 
of varying stiffness under control conditions during a chemokinetic response to 10 nM fMLF. 
Each curve represents mean data for 8-10 cells on each stiffness (one experiment), as indicated in 
the plot legend. Images are 40 µm by 40 µm and represent characteristic morphology of 
neutrophils on each stiffness. The slope of the linear portion of each curve are also indicated with 
units µm2/s in the plot legend and are used to calculate the random motility coefficient. (B) 
Random motility coefficient of neutrophils on fibronectin-coated (10 µg/mL and 100 µg/mL) 
polyacrylamide gels of varying stiffness under control conditions during a chemokinetic response 
to 10 nM fMLF. Bars indicate mean of three experiments using different blood donors, and error 
bars represent standard error of three experiments. Asterisks indicate significance at 95% 
confidence using Student’s t-test.  
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6.3.6 Neutrophil migration is superdiffusive 

Natural log-log plots of MSD versus time, with a slope of α (Figure 6.8A), 

indicate that for neutrophils moving on 13 kPa, 4 kPa, and 3 kPa gels (100 µg/mL 

fibronectin), the value of α is 1.48±0.15, 1.57±0.02, and 0.9±0.4, respectively (Figure 

6.8B). Meanwhile, on gels coated with 10 µg/mL fibronectin, the value of α is 1.42±0.05, 

1.23±0.05, 1.34±0.06, 1.25±0.10, and 0.92±0.10 (Figure 6.8B). Note that α=1 

corresponds to random Brownian motion, α>1 corresponds to superdiffusive motion, and 

α<1 corresponds to subdiffusive motion. Thus, neutrophils display superdiffusive motion 

on 4 kPa, 5 kPa, 7 kPa, and 13 kPa gels, while motility on 3 kPa is closer to random 

motion. These values can be compared with recent results obtained in a similar way for 

neutrophils on plastic substrates of varying concentrations of E-selectin, PECAM-1, and 

ICAM-1; in these experiments, a natural log-log plot of MSD versus time resulted in a 

slope of ~1.42 [196].  

 

6.3.7 Neutrophils are more persistent on stiff substrates 

Substrate stiffness also affects the distribution of turning angles of neutrophils 

(Figure 6.9) (see Section 6.2.6). Note that in pure random, Brownian motion, all turning 

angles would be equally probable, resulting in a flat distribution, while in completely 

directed motion (i.e. chemotaxis), very small turning angles would be most probable 

[202]. On 4 kPa (Figure 6.9B) and 13 kPa (Figure 6.9C), smaller turning angles are much 

more probable, while on 3 kPa the distribution is more even (Fig 6.9A), and there is a less 

noticeable preference for smaller turning angles. In addition, frequency of angle 

occurrence drops off more quickly on 4 kPa than on 13 kPa, indicating more persistent 
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motion on 4 kPa. Data here (Figure 6.9) is shown for 100 µg/mL fibronectin; similar 

trends are observed for neutrophil turning angles on 10 µg/mL fibronectin. 

____________________ 

 

Figure 6.8. Slope of natural log-log plot of mean square displacement versus time reveals 
diffusive behavior of neutrophil migration. (A) Natural log-log plot of mean square displacement 
(MSD) versus time for neutrophils migrating on 100 µg/mL fibronectin-coated gels of varying 
stiffness under control conditions during a chemokinetic response to 10 nM fMLF. Each curve 
represents mean data for 8-10 cells on each stiffness (one representative experiment is shown), as 
indicated in the plot legend. On this log-log plot, the slope of the line is equal to the exponent (α) 
in power law relationship between mean square displacement and time. The second, negatively-
sloping portion of data for 3 kPa indicates that the motility of neutrophils has significantly 
decreased. (B) Average α of three experiments for neutrophils on fibronectin-coated (10 µg/mL 
and 100 µg/mL) polyacrylamide gels of varying stiffness under control conditions during a 
chemokinetic response to 10 nM fMLF. Bars indicate mean of three experiments using different 
blood donors, and error bars represent standard error of three experiments. Asterisks indicate 
statistical difference from value on 3 kPa at 95% confidence using Student’s t-test.  
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Figure 6.9. Histograms of turning angles from one frame to the next in 10 second time intervals 
for neutrophils moving on varying substrate stiffness, including (A) 3 kPa (N=28 cells), (B) 4 kPa 
(N=28 cells), and (C) 13 kPa (N=26 cells) polyacrylamide gels coated with 100 µg/mL 
fibronectin. Neutrophils were activated with a uniform concentration of 10 nM fMLF. Zero 
degrees corresponds to no turn; that is the neutrophil remains in the same path line as the previous 
frame. One hundred eighty degrees corresponds to a complete reversal of direction from one 
frame to the next. Angles in between may be either left or right hand turns. Because the motility 
was analyzed during chemokinesis, there will be an equal probability of left and right turns of the 
same magnitude. Note that there is a more even distribution of turning angles for neutrophils on 3 
kPa, as compared to 4 kPa and 13 kPa, where the smaller turning angles are more probable. 
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6.4 Discussion 

The leukocyte adhesion cascade is a key component of the immune response. 

Neutrophils are innately present in the bloodstream in their inactive state continuously 

exploring the EC wall for activated ECs. Once they find them, the neutrophils begin 

rolling along the EC wall, firmly attach, migrate along the wall, and finally, transmigrate 

through the EC wall towards the site of infection, where they engulf endogenous 

material. However, the ECs themselves present a heterogeneous surface stiffness to the 

neutrophils. Evidence for this comes from previous AFM experiments which have found 

that the Young’s modulus of human umbilical vein ECs (HUVECs) ranges from 1.4 kPa 

to 6.8 kPa [41], depending on the location of the cell which is probed. Furthermore, the 

ECs present a variety of proteins to the neutrophil during the leukocyte adhesion cascade. 

Thus, determining if the neutrophils can actually “feel” the heterogeneity in vivo would 

be a very complex problem. In order to simplify this complex problem, in this chapter, 

we first performed experiments on polyacrylamide gels of homogeneous stiffness with 

one extracellular matrix protein (fibronectin, at concentrations of 10 µg/mL and 100 

µg/mL) cross-linked to the gel.  

Based on results from experiments using other cell types such as rat kidney 

epithelial cells and 3T3 fibroblasts [25, 56, 61], we hypothesized that a decrease in 

substrate stiffness would result in smaller neutrophil spreading areas and increased 

motility parameters (i.e. speed and random motility coefficient). The trend in our results 

for the intermediate stifffnesses and the stiffest gels supports this hypothesis. That is, 

neutrophils on intermediate stiffnesses spread less (Figure 6.4), migrate faster (Figure 

6.5), and have a larger random motility coefficient (Figure 6.7) than on the stiffest 13 kPa 
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polyacrylamide gels, for both 10 µg/mL and 100 µg/mL fibronectin. Further, the area of 

neutrophils on both ligand concentrations increases monotonically with substrate 

stiffness. 

However, the motility data for neutrophils on 3 kPa gels do not fit this monotonic 

trend. Neutrophils on 3 kPa gels (10 µg/mL and 100 µg/mL fibronectin) “bounce” around 

with a track speed (λ = 10 seconds) close to that on the intermediate stiffnesses (Figure 

6.5C); however the random motility coefficient is markedly reduced on 3 kPa (Figure 

6.7), most likely because the neutrophils are unable to migrate on such a soft surface. 

This lack of migration is presumably due to lack of attachment to the polyacrylamide gel. 

Because it is difficult to define a speed in a random walk, we also chose to 

evaluate the track speeds of the neutrophils as a function of time interval, λ (Figures 6.5A 

and 6.5B). Formally, we would expect the diffusive speeds to fall off with t-1/2, since 

diffusive speed is the time derivative of the square root of the MSD, and MSD = 4Dt for 

a two dimensional random walk. As we increase the time interval used to calculate track 

speed, the track speed decreases for neutrophils on all stiffnesses in the range tested, with 

the track speed on 3 kPa decreasing most significantly for both 10 µg/mL and 100 µg/mL 

fibronectin. Therefore, the misleadingly high value for track speed assuming λ = 10 

seconds (Figure 6.5C) on 3 kPa most likely arises because the distance traveled due to 

random motion is of similar magnitude to the distance traveled, more persistently, during 

migration of neutrophils on the stiffer gels. Thus, it would make more sense to report the 

track speed of neutrophils assuming a larger time interval, such as λ = 60 seconds (Figure 

6.5D), where the track speeds on 3 kPa are statistically less than the track speed on 4 kPa 

for 100 µg/mL fibronectin, and on 5 kPa and 7 kPa for 10 µg/mL fibronectin. These 
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analyses demonstrate that careful consideration must be taken when choosing a time 

interval for calculating speed during a random walk. If an appropriate time interval is not 

chosen, biphasic behavior may not be revealed. 

These results suggest that there exists an optimum extracellular stiffness which 

promotes neutrophil motility, and that stiffness is around 4 kPa on 100 µg/mL fibronectin 

and around 7 kPa on 10 µg/mL fibronectin. Thus, the optimum stiffness for neutrophil 

random motility shifts to a lower value for a higher ligand concentration. For 

intermediate and stiff gels, the maximum values of track speed and random motility 

coefficient are significantly larger on gels coated with 100 µg/mL fibronectin, as 

compared with 10 µg/mL fibronectin, indicating that neutrophils are ligand-sensing as 

well as mechano-sensing. Interestingly, the optimum gel stiffnesses are close to the range 

of stiffness of the innate neutrophil substrate, the vascular endothelium. However, as 

already suggested, neutrophils do feel a heterogeneous surface stiffness, and thus their 

motility may vary as they migrate across the EC. Also as previously discussed, the step of 

the leukocyte adhesion cascade which involves migration along the EC wall is critical for 

transmigration of monocytes [192], and thus we expect it to be necessary for neutrophil 

transmigration as well. For example, our results show 4 kPa is optimal (for 100 µg/mL 

fibronectin), if a large diffusion coefficient or track speed is necessary for the immune 

response. However, these results cannot predict what substrate stiffness is best for 

neutrophil transmigration; Chapter 7 will explore this idea.  

The morphology and spreading areas of the neutrophils on 13, 4, and 3 kPa (10 

µg/mL and 100 µg/mL fibronectin) suggest that they are most strongly adhered on 13 kPa 

(Figures 6.2 and 6.4). Though we did not directly measure adhesion of the neutrophils on 
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the gels of varying compliance, it is obvious by simple observation of small perturbations 

of the cells in the timelapse movies that most neutrophils on 3 kPa gels do not attach. 

These neutrophils on 3 kPa move randomly but do not displace significantly from their 

initial positions at any given time. It is also obvious that those few which spread initially 

detach from the substrate by t = 20 minutes (Figure 6.3). We can compare these 

spreading areas of activated neutrophils on gels of varying stiffness to the expected area 

for an inactive neutrophil of diameter 10 µm which projects a circular shape of area ~75 

µm2 onto the substrate. Then, the spreading areas on 3 kPa and 4 kPa are similar to that 

of an inactive neutrophil, providing further evidence that there is little attachment to those 

substrates. In the activated state, the cell area may increase or decrease slightly due to the 

break in isotropy and subsequent changes in shape, even with little attachment to the 

substrate. For a neutrophil to be well-attached, it must extend membrane as it flattens out 

in order to bind to extracellular matrix proteins on the substrate surface, resulting in an 

increase in area. Thus, the significantly larger spreading area on 13 kPa at all time points 

(Figure 6.5A), for both concentrations of ECM proteins tested, suggests that those cells 

are more strongly adhered than the cells on 3 kPa or 4 kPa.  

The results for random motility coefficient and track speed (λ = 60 seconds) lead 

us to propose a biphasic relationship between stiffness and migration, where, for the 

range of stiffnesses tested, neutrophil migration on intermediate stiffnesses around 4 kPa 

is maximal (Figure 6.10) for 100 µg/mL fibronectin, while 7 kPa is optimal for migration 

on 10 µg/mL. As expected, cell area is not biphasic with substrate stiffness, but rather 

monotonic, since neutrophils on soft surfaces do not attach, while neutrophils on stiffer 

surfaces strongly adhere.  
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Figure 6.10. Proposed biphasic relationship between the track speed, ligand concentration, and 
substrate stiffness during neutrophil chemokinetic migration. At low stiffness (~3 kPa), even 
though there is actin polymerization, a lack of adhesion to the substrate prevents migration 
because the cell cannot exert traction forces. At high stiffness (~13 kPa), close adhesion to the 
substrate prevents detachment and therefore hinders migration. At high protein concentration 
(100 µg/mL), the optimal stiffness is around 4 kPa, while at low protein concentration (10 
µg/mL), the optimal stiffness shifts to 7 kPa. At the intermediate stiffnesses, there is an interplay 
between adhesion and actin polymerization which leads to optimal migration. Note that the shape 
of the curve is only a qualitative representation of the biphasic behavior.  
 
 
____________________ 

 
Biphasic relationships between adhesion and cell speed have been previously 

reported for cells on substrates with varying protein concentrations [203]. Biphasic 

relationships between substrate stiffness and cell speed have also been reported for 

primary human aortic smooth muscle cells (SMCs) on polycrylamide gels of varying 

stiffness [197] and, more recently, for mouse fibroblasts in collagen gels of varying 

stiffness [204]. Most likely, this is due to an interplay between adhesion (force which 

hinders forward migration) and actin polymerization (force which facilitates forward 
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motion). This biphasic relationship has also been explained by an interplay between focal 

adhesion dynamics and contractility due to myosin [205]. Cell migration involves the 

regulation of actin polymerization to protrude the leading edge forward, adhesion of the 

leading edge, contraction at the rear of the cell, and finally, detachment at the rear of the 

cell, resulting in net forward movement. It has been shown that neutrophils exert the 

largest traction forces at the uropod, or rear, of the cell body, which acts as an anchor 

[206]. We hypothesized that on stiffer surfaces (such as 13 kPa), the cell cannot 

efficiently release adhesions, resulting in slowed migration. Interestingly, rear 

detachment of the cell has been reported to be the rate-limiting step in cell migration 

[207]. On soft surfaces (such as 3 kPa), the cell cannot migrate efficiently because it 

cannot exert traction forces or anchor the leading edge without adhesion. Intermediate 

stiffnesses offer the ideal mechanical environment for a balance between adhesion and 

actin polymerization, resulting in optimal migration. Our results are consistent with those 

reported for human aortic SMCs, where the migration speed is biphasic with substrate 

stiffness, with the optimal value increasing for a lower protein concentration on the 

surface of the gel [197]. This shift in optimal stiffness presumably occurs because as 

ECM density is decreased, adhesion to the substrate also decreases, which interrupts the 

optimal interplay between actin polymerization and adhesion. Because cells attach more 

stongly to stiffer substrates, a stiffer gel is necessary to increase the level of adhesion on 

low ECM densities, thus returning the optimal balance. 

We must also address the inconsistency between our data and that presented by 

Yeung et al. [56], where it was reported that neutrophil circumference does not depend 

on substrate stiffness. The discrepancy may first be explained by the fact that the stiffest 
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gel used in their experiments was around a shear modulus of 500 Pa (approximately equal 

to Young’s modulus of 1.5 kPa). According to our data (Figure 6.4A), neutrophils on 1.5 

kPa would display similar area to those on 3 kPa, which is also close to that of a passive 

neutrophil. Thus, in the range of gel stiffnesses they investigated, changes in cell area 

would not have been noticed. Further discrepancies may be found due to the time at 

which the cell area or circumference was measured. For example, if they had waited for a 

very long time (t >> 30 minutes) before imaging the cells, then they may not have noticed 

that the neutrophils take on a well-spread morphology during the first 30 minutes of 

spreading. Figure 6.4A indicates that neutrophil spreading area on 13 kPa decreases over 

the 30 minute timelapse, so it is possible that at much later times the cells are no longer 

well-spread. One possible explanation for this result is that the neutrophil chemoattractant 

receptors have become desensitized to the fMLF at later times, and the cells may retract 

as a result. Our own experiments reveal that cells remain well-spread on 13 kPa for at 

least an hour following activation with fMLF, but it is unknown what the spreading 

behavior is at later times. 

Neutrophils seem to be very fine-tuned to changes in substrate stiffness, as they 

display very different behaviors in the range 3 kPa to 13 kPa. This is not surprising, 

considering mesenchymal stem cells respond very differently to substrate stiffnesses of 1 

kPa and 10 kPa by differentiating into neurogenic or myogenic cells, respectively [64]. 

Detection of substrate stiffness is possibly carried out by the tension-sensitive talin1 

molecules which link actin polymers to integrins on the neutrophil surface [18]. Integrins 

on the neutrophil surface then bind to the fibronectin on the gel. However, it is likely that 

without sufficient mechanical tension (as on 3 kPa) on talin1, the signals for adhesion and 
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migration will not be propagated to the cell. In contrast, on 13 kPa, there may be an 

excess of mechanical tension on talin1, thus leading to strong adhesion. 

Neutrophils on 4 kPa and 13 kPa gels clearly demonstrate superdiffusive or driven 

motion, with an α (exponent in power law relationship between mean square 

displacement and time) greater than 1 (Figure 6.8). This occurs most likely due to the 

active component of their migration (i.e. actin polymerization). However, neutrophils on 

3 kPa gels display random motion, as evidenced by a mean α closer to 1 (Figure 6.8), as 

well as a fairly even distribution of turning angles between 0 and 180 degrees (Figure 

6.9A). The second portion of data for 3 kPa (Figure 6.8A) of close to zero slope indicates 

that the motility of neutrophils has significantly decreased, most likely because the 

chemoattractant receptors on the neutrophil surface have saturated, or because the cell is 

not actually migrating. We compared our results with numerical simulations and reveal 

that pure random motility produces an even distribution of turning angles, D = 0.05 

µm2/s, and α ≈ 1, indicating that neutrophils on the 3 kPa gel are not adhering. 

Furthermore, this indicates that neutrophils move randomly on 3 kPa but with persistent 

directionality on 4 kPa and 13 kPa. Persistence in motion is driven by actin 

polymerization, and morphologically the cell is polarized. The distribution of turning 

angles on varying stiffness also points to persistent motion on 4 kPa and 13 kPa (Figures 

6.9B and 6.9C), where smaller turning angles occur more frequently during the first 30 

minutes of migration after activation with fMLF. Further, the distribution falls off more 

quickly at lower turning angles for 4 kPa, as compared to 13 kPa, suggesting that 

neutrophils on 4 kPa are more persistent than those on 13 kPa. Thus, on soft gels, the 

distribution of turning angles is close to even, indicating no preference for one particular 
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turning angle. On intermediate stiffness gels, there is an extreme preference for low 

turning angles, suggesting persistent motion. On stiff gels, the distribution falls off slower 

than on intermediate stiffness, but small turning angles are preferenced more than on soft 

gels, indicating intermediate persistence.  

Though a small percentage of neutrophils on 4 kPa and 3 kPa initially appear 

well-spread, the observation that most of them retract irreversibly by t=20 minutes after 

activation (Figure 6.3) suggests that the cells on 3 kPa and 4 kPa which display initial 

spreading (Figures 6.4B and 6.4C) are simply testing the conditions of their environment. 

However, future experiments would need to be carried out in order to test this hypothesis.  

It could be argued that a greater porosity in softer gels leads to more absorption of 

protein into the gel and thus less protein on the surface of the gel. This would explain 

why neutrophils on softer gels do not spread as greatly as those on stiffer gels. However, 

to rule out this possibility, we immunostained fibronectin on the surface of the gel using a 

primary anti-fibronectin antibody and secondary antibody conjugated to Texas Red. 

Quantification of the fluorescence intensity reveals that the fibronectin coating on gels 

composed of 8% acrylamide is constant, while the fibronectin coating on gels composed 

of 5% acrylamide (3 kPa gel) is two times less than that on the 8% acrylamide gels for a 

theoretical fibronetin concentration (in solution) of 100 µg/mL. However, if the solution 

concentration is increased to 500 µg/mL, then the fluorescence intensity is of similar 

value to that on the 8% gels, indicating a similar fibronectin density on the surface of the 

gel. On 3 kPa gels coated with 500 µg/mL, the cells still do not attach and therefore the 

spreading patterns are similar to those in Figures 6.2C and 6.4C. The insensitivity of cells 

on soft gels to increased ligand density is consistent with previous reports for rat smooth 
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muscle cells [60]. Additionally, previous research has shown that the concentration of 

protein coating on polyacrylamide gels of similar acrylamide concentration remains 

constant, regardless of bis concentration [25]. Thus, we expect that substrate stiffness can 

be decoupled from ligand density, though both factors have a significant effect on 

cytoskeletal regulation during cell migration. Use of polyacrylamide gels coated with 

varying concentrations of fibronectin in these experiments allows us to investigate the 

effects of substrate stiffness and ligand density independently from each other. 

 

6.5 Conclusions 

We have demonstrated that neutrophil motility and morphology during 

chemokinesis depend on the stiffness of the substrate according to a biphasic relationship 

which has been reported in other cell types, but not yet in neutrophils and which exists 

over a narrow stiffness range, from 3 kPa to 13 kPa, which is reminiscent of the stiffness 

found in endothelial cells. Neutrophil response to stiffness during chemokinesis is 

biphasic with an optimum stiffness that is higher for a lower concentration of surface 

protein. Further, for the intermediate to stiff range of gels, increased migration is 

observed with a higher concentration of protein on the surface.  Therefore, neutrophils 

are both ligand-sensing and mechano-sensing. Presumably, this relationship is based on a 

competition between adhesiveness and actin polymerization. In the next chapter (Chapter 

7), we will explore whether this mechanosensitivity is relevant to neutrophil migration 

along and transmigration through their innate substrate, the vascular endothelium. 
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7 Subendothelial Matrix Stiffness Influences Neutrophil 
Transmigration via Myosin Light Chain Kinase-Dependent 
Cell Contraction† 
 
7.1 Introduction 

 Leukocyte transmigration through the vascular endothelium is a crucial step in the 

normal immune response. However, it is a complicated biological process that involves 

many proteins and requires a coordinated effort between the leukocytes and endothelial 

cells (ECs). The biophysical aspects of leukocyte transmigration are also important, as 

mechanical force transmission is an essential regulator of vascular homeostasis. It is 

likely that the mechanical properties of the vasculature depend on both vessel size (large 

vessels versus microvasculature) and location (soft brain versus stiffer muscle or tumor). 

Further, in the cardiovascular disease of atherosclerosis, the arteries stiffen [113, 115, 

116, 119] as an increased number of leukocytes penetrate the endothelium, and tumor 

vasculature is also stiffer [114]. However, it is unknown how changes in vasculature 

stiffness affect the behavior of the ECs lining the blood vessel, or the behavior of the 

leukocytes migrating along and transmigrating through the endothelium. Interestingly, 

polymorphonuclear neutrophils are capable of sensing differences in both substrate 

stiffness and surface-bound adhesion proteins (Chapter 6). Therefore, we would expect 

neutrophils to be capable of sensing similar changes that may occur in their physiological 

substrate, the endothelium.  

____________________ 

† This chapter was adapted from Stroka, K.M. and H. Aranda-Espinoza (2011). Endothelial cell substrate 
stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction. 
Blood 118(6), 1632-1640. © The American Society of Hematology. Permission was obtained from the 
publisher to use this material in the current dissertation. 
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 The mechanical properties of ECs are affected by a number of physiological 

factors, including shear stress [30], cholesterol content [31, 154], and oxidized low-

density lipoprotein [32], as reviewed in Section 2.4. Furthermore, neutrophil adherence to 

ECs increases EC stiffness, likely due to signaling cascades that induce rearrangement of 

the actin cytoskeleton [38, 39]. However, little is known about the effects of substrate 

stiffness on the biophysical properties of healthy or inflamed EC monolayers. Single EC 

stiffness increases with substrate stiffness [73], though cells in monolayer may show 

different behavior than single cells, as the degree of cell-cell adhesion also contributes to 

cell stiffness (Chapter 4). 

  Neutrophil adherence to the endothelium has been shown to regulate EC gap 

formation through a cytosolic calcium-dependent mechanism [208]. Myosin light chain 

kinase (MLCK) is activated downstream of calcium-calmodulin binding and 

phosphorylates myosin light chain, which activates myosin and induces EC contraction, 

leading to formation of gaps and subsequent regulation of neutrophil transmigration [209, 

210]. Consistent with this cascade, leukocyte adhesion and transmigration increase the 

magnitude of EC traction forces exerted onto the substrate [82, 92]. Because cells are 

capable of exerting larger traction forces onto stiffer substrates [61], the MLCK-mediated 

signaling cascade induced by neutrophil adhesion may depend on the mechanical 

properties of the EC substrate, possibly leading to changes in transmigration. 

 In this work, we designed an in vitro model of the vascular endothelium (Chapter 

3) to explore the role of EC substrate stiffness in neutrophil transmigration. Neutrophils 

primarily transmigrate in the microvasculature, the mechanical properties of which likely 

vary with health and in different regions of the body. Thus, we used fibronectin-coated 
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polyacrylamide gel substrates of varying physiologically-relevant stiffness [43, 119, 120] 

(0.42 kPa - 280 kPa). We plated human umbilical vein endothelial cells (HUVECs) onto 

the gels, allowed them to form monolayers, and activated them with tumor necrosis 

factor-alpha (TNF-α) to stimulate an inflammatory response. TNF-α treatment induced 

significant changes in the endothelium, including softening, local alignment, 

enlargement, elongation, and cytoskeletal rearrangement. We then added neutrophils to 

the endothelium (Figure 7.1A) and observed transmigration. Interestingly, neutrophil 

transmigration increased with increasing substrate stiffness below the endothelium. To 

explain this, we first evaluated the effects of substrate stiffness on a range of HUVEC 

properties, including inter-cellular adhesion molecule-1 (ICAM-1) expression, cell 

stiffness, F-actin organization, cell morphology, and cell-substrate adhesion. Once the 

HUVECs were activated with TNF-α, these properties could not account for the higher 

fraction of transmigrated neutrophils on stiffer substrates. Meanwhile, inhibition of 

MLCK or myosin II decreased transmigration on stiff substrates, while transmigration on 

soft substrates was unaffected. In addition, on stiff substrates, we observed formation of 

large holes in the monolayers as ECs retracted; hole formation initiated as neutrophil 

transmigration reached a maximum. These results provide strong evidence that neutrophil 

transmigration is regulated by MLCK-mediated generation of intercellular gaps through 

EC contraction, and that this phenomenon depends on substrate stiffness. These results 

may also be associated with cardiovascular disease biology, where increased arterial 

stiffness is coupled with increased leukocyte transmigration.  
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7.2 Materials and methods 

7.2.1 Substrate preparation and characterization 

 Thin polyacrylamide gels were attached to glass coverslips by a method first 

described by Wang and Pelham [198] and described in detail in Section 6.2.1. 

Concentrations in this work included 15% acrylamide + 1.2% bis (280 kPa), 8% 

acrylamide + 0.2% bis (13 kPa), 8% acrylamide + 0.07% bis (5 kPa), 8% acrylamide + 

0.04% bis (4 kPa), 5% acrylamide + 0.05% bis (3 kPa), 3% acrylamide + 0.1% bis (0.87 

kPa), and 3% acrylamide + 0.06% bis (0.42 kPa). Gels (~80 µm thick) were coated with 

0.1 mg/mL fibronectin (Sigma, St. Louis, MO), also as previously described in Section 

6.2.1. Young’s moduli of the gels were determined using dynamic mechanical analysis 

and atomic force microscopy (Section 6.2.2) and characterization of surface-bound 

fibronectin was done using immunofluorescence to ensure equal protein presentation with 

stiffness (Section 6.2.3). For experiments on glass, coverslips (22x22 mm, Fisher 

Scientific, Pittsburgh, PA) were coated with 0.1 mg/mL fibronectin for 2 hours at room 

temperature.  

 

7.2.2 Cell culture and treatments 

 HUVECs were purchased from Lifeline Cell Technology (Walkersville, MD) and 

cultured as previously described in Section 4.2.1. Human brain microvascular ECs 

(HBMECs; Applied Cell Biology Research Institute, Kirkland, WA) were cultured as 

previously described [211]. Cells (passages 2-5; 4x105 total) were plated onto 

fibronectin-coated glass coverslips or polyacrylamide gels and grown for approximately 

48 hours until monolayer formation. Cells were then treated with 25 ng/mL human TNF-
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α (Fisher Scientific) for the final 24 hours prior to experiments. To further increase 

permeability of monolayers [166-168], following TNF-α activation, HUVECs were 

treated with 10 ng/mL cytochalasin B (cytoB; Sigma) or with 1:100 dilution (10 µg/mL) 

of VE-cadherin antibody (Sigma V1514) for 1 hour at 37˚C just prior to experiments and 

then washed once with phosphate buffered saline (PBS), as previously described in 

Section 4.2.1. To inhibit MLCK or myosin II, HUVEC monolayers were pretreated with 

15 µM ML-7 (Sigma) or 15 µM blebbistatin, respectively, for 8 minutes and then washed 

with PBS prior to adding neutrophils. For some experiments, neutrophils were treated in 

suspension with 15 µM ML-7 for 8 minutes, centrifuged, and resuspended in buffer 

solution. Treatments with dimethyl sulfoxide (DMSO; Fisher Scientific) or anti-human 

IgG (Fc specific) antibody (Sigma I9135) were used for vehicle controls as appropriate. 

 

7.2.3 Transmigration assays 

 Neutrophils were isolated from human blood as previously described in Section 

6.2.4. Methods were approved by the University of Maryland Institutional Review Board. 

Following TNF-α treatment, EC monolayers were washed once with PBS and replaced 

with fresh media, or treated as described above. A total of approximately 10x105, 5x105, 

or 2x105 neutrophils were plated onto the EC monolayer and allowed to gravitate down to 

the monolayer for about 30-60 seconds. Phase contrast images were then captured for 30 

minutes as the neutrophils migrated along and transmigrated through the EC monolayers. 

Microscopy was completed at 37°C, 5% CO2 and 55% humidity using an inverted 

microscope (Olympus IX71, Center Valley, PA). Images were captured with a QImaging 

Retiga-SRV charge-coupled device (CCD) digital camera (QImaging Corporation, 
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Surrey, British Columbia, Canada) using IPLab software (Becton, Dickinson and 

Company, Franklin Lakes, NJ). Fraction of neutrophil transmigration was calculated by 

dividing the number of neutrophils which transmigrated in a particular 30 minute 

sequence by the total number of neutrophils (typically around 50) in the first frame of 

that sequence. Neutrophils which entered or exited the field of view later during the 

sequence were not counted. All experiments were repeated at least 3 times. Neutrophil 

injury to the monolayer was quantified by counting the number of visible holes in the 

monolayer in images at various timepoints after plating neutrophils. Number of holes was 

normalized to total image area. Outlines of holes were traced by hand and area was 

quantified using ImageJ (National Institutes of Health, Bethesda, MD). Neutrophil 

migration speeds along the endothelium were determined as outlined in Section 6.2.6. 

Times for neutrophils to complete transmigration were measured starting at the timepoint 

just before the first darkened piece of cell was observed in phase contrast microscopy 

(indicating that transmigration had initiated), and ending at the first timepoint when the 

entire cell was darkened (indicating that the cell had completely traversed the 

monolayer). 

 

7.2.4 Cell staining 

 HUVEC monolayers were fixed, permeabilized, and blocked for non-specific 

binding as previously described in Section 4.2.2. Cells were stained with antibodies for β-

catenin (to visualize cellular borders) and vinculin (to quantify focal adhesions), or with 

phalloidin-TRITC (to label F-actin) or Hoechst stain (to label cell DNA), as previously 

described in Section 4.2.2. For ICAM-1 staining, non-permabilized HUVECs were 
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treated with 10 µg/mL monoclonal anti-human ICAM-1 antibody (R&D Systems BBA3, 

Minneapolis, MN) for 1 hour, followed by 5 µg/mL anti-mouse Alexa 488 secondary 

antibody (Invitrogen A11001, Carlsbad, CA) for 1 hour. Fluorescence microscopy was 

completed at room temperature on immunostained HUVECs using an inverted 

microscope (Olympus IX81). Images were captured with a Hamamatsu ORCA-ER CCD 

digital camera (Leeds Precision Instruments, Minneapolis, MD) using Slidebook software 

(Intelligent Imaging Innovations, Inc., Denver, CO). Cell morphology (area and aspect 

ratio) and vinculin punctate size and density were measured using the fluorescence 

images and Image J as previously described in Section 4.2.6. Here, β-catenin-stained cell 

morphology was measured by applying an edge detector filter, thresholding the images, 

and then using the particle analyzer in ImageJ. 

 

7.2.5 Viral transfection 

 HUVECs were transfected with VE-cadherin-GFP (VEcadGFP) using an 

adenovirus (AdV), which was received as a gift from Dr. William Luscinskas (Harvard 

University). Construction of the VEcadGFP plasmid and transference to an adenovirus 

expression vector were previously described in work from Dr. Luscinskas’s lab [98]. 

HUVECs were plated onto fibronectin-coated polyacrylamide gels as discussed in 

Section 7.2.2 and given 1-2 hours to spread. After attachment and spreading, 3 µL of 

AdV-VEcadGFP were added to the cells with 2 mL media. HUVECs were incubated for 

1-2 days, and finally 25 ng/mL TNF-α was added for an additional 24 hours. Over 24 

hours, significant removal of VEcadGFP from the junctions was noticed using 
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fluorescence timelapse microscopy; however, the signal was still strong enough at 24 

hours to obtain data. 

 

7.2.6 Atomic force microscopy  

 Young’s moduli of live HUVEC monolayers were measured using an atomic 

force microscope (AFM; Agilent, Santa Clara, CA) with a silicon nitride cantilever 

(Novascan, Ames, IA) with a spherical glass SiO2 probe of diameter 5 µm. The AFM 

methods have previously been described in detail in Section 4.2.3. Gel substrates with 

HUVEC monolayers attached were positioned under the AFM tip and typical force 

curves were captured for at least 100 different locations along each of 3 independent 

samples per condition. In a custom-written Matlab (The MathWorks, Natick, MA) 

program, data were fit to the Hertz-Sneddon model [144] for a paraboloid indenter [146]: 

, 

where 

€ 

Fparaboloid  is the force exerted by the paraboloid indenter, is the Young’s modulus 

of the cell, is the radius of curvature of the indenter, and is the distance of the 

indenter from the sample. The cells were assumed to be nearly incompressible [152] and 

therefore it was assumed that = 0.45 was the Poisson’s ratio of the elastic halfspace. 

The Young’s modulus was found for each force curve using the fitting algorithm and 

average Young’s modulus was computed by averaging all force curves for a given 

condition.  

 Gels were ~80 µm thicker than the indentation depth (<200nm), so that the 

stiffness of the glass coverslip did not affect force curves. Cells within the monolayers 
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were probed at both the “cell body” (the raised portion), as well as at the cell “periphery” 

(near the base of the cell body, but not at the cell-cell junctions to avoid the thinnest part 

of the cell). Indentations were much smaller than the height of the sample (several 

microns, as measured by confocal microscopy), even at the “periphery” location. In 

addition, cells were probed with small forces (~2 nN). Thus, it is very unlikely that the 

substrate stiffness below the HUVECs affected the force curves. 

 

7.2.7 Statistical analysis 

 Statistical tests were done between pairs of data using a Student’s t-test, or among 

groups of data using analysis of variance (ANOVA), where P<0.05 indicated statistical 

significance. Following ANOVA, multiple comparisons were done using Tukey’s 

honestly significant difference criterion. All measurements reported in this article are in 

the format mean ± standard error.  

 

7.3 Results 

7.3.1 Neutrophil transmigration increases with stiffness below the endothelium 

 We created an in vitro model of the vascular endothelium, where the blood vessel 

layers below the endothelium were represented by fibronectin-coated polyacrylamide 

gels of a range of stiffnesses (Figure 7.1A). HUVECs, typical cells to represent the 

endothelium for leukocyte transmigration in vitro, were plated at high density onto the 

gels to form monolayers. The endothelium was activated with TNF-α in order to induce 

an inflammatory response. Neutrophils were plated onto the endothelium, and we 

observed neutrophil activation and migration along the monolayer. Subsequently, a 
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fraction of neutrophils transmigrated through the endothelium (Figures 7.1B and 7.1C). 

Neutrophil transmigration was easily observed in phase contrast microscopy and was 

identified by a change in phase of the neutrophils, from white to dark (Fig 7.1D). 

Neutrophils in the process of transmigrating contained both a white portion still on top of 

the endothelium, as well as a dark portion already beneath the endothelium (Figure 7.1D; 

white arrows). Transmigration typically occurred within about 30 seconds to several 

minutes. Interestingly, we observed increased neutrophil transmigration through HUVEC 

monolayers with increased substrate stiffness (Figure 7.1B). From 0.42 kPa to 5 kPa, the 

fraction of transmigration increased linearly with substrate stiffness (r2 = 0.99). Similar 

results were obtained using HBMECs (Figure 7.1B). 

 
 
 
____________________ 

 
 
 
 
Figure 7.1. Neutrophil transmigration increases within increasing subendothelial matrix stiffness. 
(A) HUVECs were plated onto fibronectin-coated polyacrylamide gels of varying stiffness from 
0.42 kPa to 280 kPa. After monolayer formation, HUVECs were treated with TNF-α to induce an 
inflammatory response. Neutrophils were isolated from human blood and plated onto the HUVEC 
monolayer. (B) The fraction of neutrophils which transmigrated was quantified as a function of 
the stiffness below the HUVECs. Bars indicate average fraction of transmigrated cells, while 
error bars indicate standard error of 3-8 experiments (N = 6, 8, 4, 6, 8, 3, 7, 3 from 0.42 kPa, 0.87 
kPa, 3 kPa, 4 kPa, 5 kPa, 13 kPa, 280 kPa, and glass (~50 GPa), respectively). (C) Data from 
panel B, up to 5 kPa, are plotted with a linear fit (r2 = 0.99). Statistical significance for panels B-
C is indicated by *** (P<0.001), ** (P<0.005), or ^ (P<0.05), using a t-test in comparison with 5 
kPa value of same cell type. (D) Shown is an example of a phase contrast timelapse image 
sequence of 4 neutrophils, 2 of which transmigrate through the endothelium. Scale bar is 10 µm 
and applies to all images. T=0 is time just prior to initiation of transmigration in the first cell. 
White arrows point to the phase-darkened portion of the neutrophil as it transmigrates through the 
endothelium. At T=75 seconds, the white arrowhead points to a neutrophil which possibly 
initiates but does not complete transmigration. In the final frame, the 2 darkened neutrophils are 
between the endothelium and the gel, while the 2 white neutrophils are on top of the endothelium. 
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7.3.2 Neutrophils transmigrate primarily via the paracellular pathway 

 As discussed in Section 2.9, neutrophils are able to transmigrate through two 

different pathways: (1) the paracellular route and (2) the transcellular route. When 

neutrophils take the paracellular route, they can squeeze between ECs along the border 

(“bicellular”), or between three ECs at the tricellular junction. In vivo, neutrophils 

preferentially take the tricellular mode of transmigration in mouse cremaster muscle 

microvessels, as measured using intravital microscopy [212]. Neutrophils have also been 

shown to preferentially transmigrate at tricellular junctions in vitro [213]. 

Here, we wished to determine whether subendothelial matrix stiffness affects the 

mode of transmigration. Using an adenovirus, we transfected HUVECs for VEcadGFP to 

observe the location of the cell-cell junctions live, during transmigration. We 

simultaneously captured phase contrast images of the neutrophils and fluorescence 

images of EC VEcadGFP, and overlaid them to determine the point of transmigration in 

relation to the EC borders. We observed transmigration via all three pathways: at 

bicellular junctions (Figure 7.2), at tricellular junctions (Figure 7.3), and via the 

transcellular route (Figure 7.4).  

In addition, we quantified the relative contributions of each of these routes to the 

total amount of transmigration (Figure 7.5). In our experiments, the paracellular pathway 

comprised a significantly higher fraction of transmigration than the transcellular pathway, 

for all stiffnesses (P<0.05). Transcellular transmigration accounted for less than 7% of 

total transmigration on all stiffness (Figure 7.5). By trend, neutrophils slightly favored the 

bicellular route over the tricellular routes, though there was no statistical difference 

between the two pathways for any substrate stiffness (Figure 7.5). 
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Figure 7.2. Example of neutrophil transmigration through the bicellular pathway. (A) The 
schematic indicates the method of bicellular transmigration, by which a neutrophil (red) squeezes 
through at the junction of two cells. Also shown in panel A are a phase contrast image and 
fluorescence image of VEcadGFP. The red arrow points to the neutrophil of interest, which 
transmigrates through the bicellular pathway. (B) Overlay of the phase contrast (red) and 
VEcadGFP (green) images indicates that the neutrophil of interest, now shown by the white 
arrow, transmigrates right at the cell-cell junctions (green). In each image in panel B, the time in 
the lower left-hand corner is in minutes:seconds format and indicates the time after plating 
neutrophils on the endothelium. Scale bar in phase contrast image in panel A is 10 µm and applies 
to all images. Note that the VEcadGFP (green) image is the same for all timepoints and 
therefore does not show dislocation of VE-cadherin from the junction as the neutrophil 
transmigrates. 
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Figure 7.3. Example of neutrophil transmigration through the tricellular junctions of ECs. (A) 
The schematic indicates the method of tricellular transmigration, by which a neutrophil (red) 
squeezes through at the junction of three cells. Also shown in panel A are a phase contrast image 
and fluorescence image of VEcadGFP. The red arrow points to the neutrophil of interest, which 
transmigrates through the tricellular pathway. (B) Overlay of the phase contrast (red) and 
VEcadGFP (green) images indicates that the neutrophil of interest, now shown by the white 
arrow, transmigrates right at the intersection of three ECs. In each image in panel B, the time in 
the lower left-hand corner is in minutes:seconds format and indicates the time after plating 
neutrophils on the endothelium. Scale bar in phase contrast image in panel A is 10 µm and applies 
to all images. Note that the VEcadGFP (green) image is the same for all timepoints and 
therefore does not show dislocation of VE-cadherin from the junction as the neutrophil 
transmigrates. 
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Figure 7.4. Example of neutrophil transmigration through the transcellular pathway. (A) The 
schematic indicates the method of transcellular transmigration, by which a neutrophil 
transmigrates through the body of an EC, far from the cell-cell junctions. Also shown in panel A 
are a phase contrast image and fluorescence image of VEcadGFP. The red arrow points to the 
neutrophil of interest, which transmigrates through the transcellular pathway. (B) Overlay of the 
phase contrast (red) and VEcadGFP (green) images indicates that the neutrophil of interest, now 
shown by the white arrow, transmigrates far from the cell-cell junctions (green). In each image in 
panel B, the time in the lower left-hand corner is in minutes:seconds format and indicates the time 
after plating neutrophils on the endothelium. Scale bar in phase contrast image in panel A is 10 
µm and applies to all images. Note that the VEcadGFP (green) image is the same for all 
timepoints. 
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Figure 7.5. Neutrophils transmigrate through HUVECs primarily via the paracellular route 
(specifically, the bicellular route or at tricellular junctions. For each subendothelial matrix 
stiffness, the fraction of transmigration is the number of neutrophils that transmigrated via a 
particular route, divided by the total number of neutrophils that transmigrated (not the total 
number of cells). Bars are average of 3 experiments, while error bars indicate standard error. * 
indicates P<0.05 with paracellular and tricellular junctions data for the same substrate stiffness. 
 

 
 
____________________ 

 
 
 
7.3.3 ICAM-1 expression does not depend on substrate stiffness 

 TNF-α activation of HUVECs is known to upregulate ICAM-1, which was 

necessary for neutrophil transmigration according to two experiments which we 

performed: (1) If the HUVECs were not activated using TNF-α, there was low ICAM-1 

expression, and we observed that only ~1% of neutrophils transmigrated (Figure 7.6). (2) 

If the HUVECs were activated using TNF-α, but then ICAM-1 was blocked using an 

antibody, we observed the fraction of transmigration drop off with increasing antibody 
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concentration on all substrates (Figure 7.6). Thus, we quantified ICAM-1 expression on 

the apical surface of TNF-α-activated HUVEC monolayers using an ICAM-1 antibody 

and a fluorescent secondary antibody, combined with fluorescence imaging (Figure 

7.7A). Quantification of the fluorescence intensity revealed no difference (P>0.05) in 

ICAM-1 expression in TNF-α-activated HUVECs on 0.87 kPa, 5 kPa, and 280 kPa 

substrates (Figure 7.7B). 

 

7.3.4 Stiffness of TNF-α-activated HUVEC monolayers varies little with substrate 

stiffness 

 Using AFM, we obtained deflection images (Figure 7.8A) and then measured the 

stiffness (Young’s modulus) of control and TNF-α-activated HUVEC monolayers on 

varying substrates, at both the cell body and periphery locations (Figure 7.8B). Deflection 

images of control monolayers revealed more disorganization on soft, 0.87 kPa substrates 

than on stiffer 5 kPa or 280 kPa substrates (Figure 7.8A; top). Average stiffness of the 

control endothelium increased with increasing substrate stiffness at both the cell body and 

periphery (Figure 7.8B; P<0.001). However, upon treatment with TNF-α, the HUVECs 

on all substrates elongated, aligned, and enlarged, and no differences were observed 

between the three substrates in the AFM deflection images (Figure 7.8A; bottom). 

Further, while the stiffness of the TNF-α-activated endothelium still increased with 

substrate stiffness at both the cell body and periphery (Figure 7.8B; P<0.001), the trend 

was much less dramatic. Interestingly, the endothelium softened with TNF-α treatment on 

the stiffer substrates (P<0.001). In varying substrate stiffness, the stiffness of the TNF-α-
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activated endothelium changed only to a small degree (~50 Pa at the cell body and ~300 

Pa at the periphery). 

 

____________________ 

 

 

 
 

Figure 7.6. Neutrophil transmigration depends on endothelial cell ICAM-1 presentation. 
HUVECs on varying substrates (087, 5, and 280 kPa) were treated with TNF-α for 24 hours, 
washed with PBS, treated with varying concentrations of ICAM-1 antibody (0.1, 1, 5, and 10 
µg/mL) for 1 hour, and washed again with PBS. Neutrophils were plated onto the endothelium, 
and 10 images were taken in various locations across the monolayer at 15 minutes after addition 
of neutrophils in order to visualize and subsequently quantify the fraction of transmigrated 
neutrophils. Data points are also shown for no ICAM-1 antibody (0 µg/mL; high ICAM-1) after 
TNF-α treatment, as well as for no TNF-α treatment (low ICAM-1). Data points represent 
average fraction of transmigrated cells, while bars indicate standard error. Dotted lines connecting 
data points do not represent data but are included to guide the eye.  
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Figure 7.7. Immunostaining indicates no change in ICAM-1 expression with substrate stiffness. 
ICAM-1 was measured as a function of HUVEC substrate stiffness using a fluorescently-tagged 
antibody to ICAM-1 on non-permeabilized TNF-α-activated HUVEC monolayers. Fluorescence 
images were taken over many locations on the non-permeabilized HUVEC monolayer surface 
(A), and intensity (in arbitrary units, au) was quantified using ImageJ software (B). Scale bar in 
panel A is 20 µm and applies to all images. Substrate stiffness is indicated in the upper left corner 
of each image in panel A. Bars indicate average of at least 20 images from each of 2 independent 
experiments, while error bars indicate standard error. ANOVA indicates that P>0.05 among 
stiffnesses. 
 

 

 

 

 

 

 

 



www.manaraa.com

  149 

 
 

 
 
Figure 7.8. Atomic force microscopy data reveals only a slight increase in TNF-α-activated 
HUVEC stiffness with substrate stiffness. (A) Atomic force microscopy (AFM) was used to 
obtain deflection images for HUVEC monolayers on 0.87 kPa, 5 kPa, and 280 kPa substrates, 
both under control and TNF-α-treated conditions. Deflection images are 90 µm by 90 µm. (B) 
AFM was also used to quantify the Young’s modulus (“stiffness”) of HUVEC monolayers as a 
function of substrate stiffness in the control (no TNF-α) and after TNF-α treatment. The stiffness 
of the “cell body” region (raised portion of the cell) and periphery (flattened region just around 
the raised portion) were quantified separately. Bars indicate average stiffness from N force curves 
from 3 independent experiments, while error bars indicate standard error. N=47, 50, 89 on control 
monolayers on 0.87 kPa, 5 kPa, and 280 kPa, respectively, at the cell body.  N=381, 351, 334 on 
control monolayers on 0.87 kPa, 5 kPa, and 280 kPa, respectively, at the periphery.  N=96, 121, 
160 on TNF-α-activated monolayers on 0.87 kPa, 5 kPa, and 280 kPa, respectively, at the cell 
body.  N=396, 357, 399 on TNF-α-activated monolayers on 0.87 kPa, 5 kPa, and 280 kPa, 
respectively, at the periphery. *** indicates P<0.001 using ANOVA. On 280 kPa, P<0.001 
between control and TNF-α at both cell body and periphery using Student’s t-test. 
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7.3.5 Neutrophil transmigration injures the endothelium on stiff substrates 

 Prior to neutrophil transmigration, HUVEC monolayers on soft and stiff 

substrates were visually intact, according to phase contrast images. Interestingly, 

monolayers on soft substrates were nearly always still intact following neutrophil 

transmigration (Figure 7.9A). In contrast, neutrophil transmigration created large holes in 

the monolayers on stiff substrates (Figures 7.9B, 7.9C, and 7.9D), indicating EC injury. 

Holes initiated as the HUVECs retracted, though they retained cell-cell adhesion on the 

sides opposite to retraction. In some cases, significant neutrophil accumulation beneath 

the endothelium created large holes and prevented healing (Figure 7.9D), while often the 

endothelium was able to heal smaller holes (Figure 7.9E). Hole formation was usually 

initiated by neutrophils which had already transmigrated and which changed in 

morphology from highly protrusive (Figure 7.10; T=0.92 to T=2.25 minutes), to more 

isotropic and spread-out (Figure 7.10; T=5.83 minutes). Hole formation began at 25 

minutes after plating neutrophils (about the same time when the maximum fraction of 

neutrophils had transmigrated), reached a peak by 45 minutes, and subsequently dropped 

off (Figure 7.11A). Holes were observed similarly when 10x105 or 5x105 neutrophils 

were added to the endothelium, while very few holes were observed with 2x105 

neutrophils (Figures 7.11A and 7.11B). Holes were also significantly larger on 5 kPa or 

280 kPa substrates in comparison with 0.87 kPa (Figure 7.11C). 

 

7.3.6 Decreasing cell-cell adhesion increases transmigration on soft substrates 

 To determine whether endothelial cell-cell adhesion changed with substrate 

stiffness, we varied the degree of cell-cell adhesion by preconditioning the TNF-α-
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activated endothelium for one hour with one of two treatments: (1) 10 ng/mL cytoB or 

(2) VE-cadherin antibody, both of which have previously been shown to decrease cell-

cell adhesion [166-168]. With VE-cadherin antibody treatment, there was increased 

transmigration on soft 0.87 kPa substrates in comparison with the IgG antibody control 

(P<0.05), yet no change in transmigration on stiff 280 kPa substrates in comparison with 

the control (P>0.05) (Figure 7.12A). Transmigration was not statistically different with 

cytoB treatment for any substrates. 

 

7.3.7 Inhibition of MLCK normalizes effects of substrate stiffness 

 We investigated the role of MLCK-mediated EC contraction in neutrophil 

transmigration as a function of substrate stiffness using the selective MLCK inhibitor 

ML-7 [214] (Figure 7.12B). Transmigration through ML-7-treated HUVECs on stiff 

substrates (5 kPa and 280 kPa; 58±6% and 67±5% transmigration, respectively) was 

reduced nearly to the level as on soft substrates with the same treatment (0.87 kPa; 

45±5% transmigration) (Figure 7.12B). On 5 kPa and 280 kPa, transmigration was 

significantly reduced with respect to the DMSO vehicle control (Figure 7.12B; P<0.01), 

while transmigration on the soft 0.87 kPa substrate was not affected. Treatment of 

HUVECs with blebbistatin to inhibit myosin II had the same effect as ML-7 treatment 

(Figure 7.12B). Very few holes formed on all substrates with ML-7 treatment. ICAM-1 

expression was not affected by ML-7 treatment on any substrate (Figure 7.13). As 

expected, transmigration of ML-7-treated neutrophils through untreated (TNF-α only) 

ECs was reduced on all substrates (Figure 7.12B). 
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Figure 7.9. Neutrophil transmigration on stiff substrates causes injury to the monolayer; small 
holes reseal while larger ones do not. Shown are representative phase contrast images of the 
HUVEC monolayer following neutrophil transmigration on (A) a soft (0.87 kPa) substrate, and 
(B-C) stiff (280 kPa) substrates. Time after plating neutrophils onto the HUVEC monolayers (T) 
is shown at the top of each image. Large holes commonly form in monolayers on stiff substrates 
after transmigration and are outlined in panels B-C by white dotted lines. (D) Also shown is a 
phase contrast image of a monolayer on a 280 kPa substrate at approximately 2 hours after plating 
neutrophils. Significant neutrophil accumulation in the area of the hole has occurred. The scale 
bar in panel D is 50 µm and applies to images in panels A-D. (E) Shown is a time sequence of a 
hole forming and then healing on a 5 kPa substrate. Time after plating neutrophils is indicated at 
the bottom of each image. The scale bars on all images in panel E are 20 µm. 
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Figure 7.10. Change in neutrophil morphology, from protrusive to round, after transmigration 
leads to injury of the endothelium on a stiff substrate. Phase contrast time sequence of two 
neutrophils as they migrate on top of a HUVEC monolayer on a 280 kPa gel and then 
transmigrate. The time after plating (T) is shown in minutes and the scale bar is 20 µm and 
applies to all images in panel E. Black arrows point to the first neutrophil of interest (Cell 1), 
while the white arrows point to a second neutrophil of interest (Cell 2). Cell 1 is in the middle of 
transmigrating in the first image and transmigrates completely by T=0.42. At T=5.83, it 
drastically changes morphology and spreads out in an isotropic fashion (Cell 1 is outlined in 
black dotted line for clarity when it is under the endothelium). Then, at T=8.42 Cell 2 enters the 
view, migrates toward Cell 1 and then transmigrates (black dotted outline in T=9.67 and T=9.83). 
By T=10.58, Cell 2 has completely transmigrated and both cells have spread out nearly 
isotropically, instead of taking on the spindly-like morphology normally seen in neutrophils 
which are migrating under the HUVEC monolayer. After both cells have transmigrated and 
spread out, the HUVEC monolayer rips apart (white dotted line at T=13.17), exposing Cell 1 and 
Cell 2 spread out on the now-bare gel.  
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Figure 7.11. Endothelial cell hole formation begins when neutrophil transmigration has reached a 
maximum. (A) Fraction of neutrophils which have transmigrated (primary vertical axis) as a 
function of time after addition of neutrophils is shown for varying substrates (0.87, 5, 280 kPa). 
Also plotted is the number of holes per area (secondary vertical axis) as a function of time after 
addition of neutrophils, for varying substrates and number of neutrophils plated. (B) Data from 
panel A at T=45 minutes is highlighted. Shown is the number of holes per area on each of the 
substrates, with varying numbers of neutrophils. (C) The area of holes at T=45 minutes is 
quantified for varying substrate stiffness and number of neutrophils plated. Bars indicate average, 
while error bars indicate standard error. * and *** indicate P<0.05 and P<0.001, respectively, 
using ANOVA. 
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Figure 7.12. MLCK mediates substrate stiffness-dependent neutrophil transmigration. (A) TNF-
α-activated HUVEC monolayers were pre-treated with appropriate control (DMSO or IgG 
antibody), cytochalasin B (cytoB), or VE-cadherin antibody (VEcad Ab) for one hour. 
Neutrophils were plated onto the HUVECs and the fraction of transmigration was quantified on 
soft (0.87 kPa) and stiff (280 kPa) substrates. (B) TNF-α-activated HUVEC monolayers were pre-
treated with DMSO, blebbistatin, or ML-7. Neutrophils were plated onto the HUVECs and the 
fraction of transmigration was quantified on soft (0.87 kPa), intermediate (5 kPa), and stiff (280 
kPa) substrates. Also shown is the fraction of transmigration for ML-7-treated neutrophils 
through TNF-α-treated monolayers. In panel B, the legend indicates whether the endothelial cells 
(EC) or neutrophils (N) were treated with the drug. Bars in panels A-B indicate average fraction 
of transmigrated cells, while error bars indicate standard error from at least 3 independent 
experiments. In panel A * indicates P<0.05 with IgG antibody control using Student’s t-test. In 
panel B * indicates P<0.05 and ** indicates P<0.01 between treated monolayers and DMSO 
control using Student’s t-test.  
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Figure 7.13. Immunostaining indicates no change in ICAM-1 expression with substrate stiffness 
after treatment with TNF-α and ML-7. ICAM-1 was measured as a function of HUVEC substrate 
stiffness using a fluorescently-tagged antibody to ICAM-1 on TNF-α-activated and TNF-α-
activated plus ML-7-treated HUVEC monolayers. Fluorescence images were taken over many 
locations on the HUVEC monolayer surface, and intensity was quantified using ImageJ software. 
Bars indicate average of at least 20 images from each substrate, while error bars indicate standard 
error. 
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7.3.8 TNF-alpha abrogates effects of substrate stiffness on F-actin organization 

 Using phalloidin-actin staining, we evaluated the organization of the F-actin 

cytoskeleton as a function of substrate stiffness for control monolayers and those treated 

with TNF-α. In control monolayers on soft 0.87 kPa substrates, the F-actin was more 

disorganized, with less developed stress fibers, as compared with control monolayers on 

stiff 280 kPa substrates, where the actin fibers appeared longer, straighter, and more 

organized (Figure 7.14; white arrowheads). Once the HUVECs were treated with TNF-α, 

the F-actin architecture did not appear noticeably different on soft and stiff substrates; the 

stress fibers were extended and mature on all substrates (Figure 7.15; white arrowheads), 

as observed by fluorescence microscopy. F-actin staining also revealed the elongation, 

alignment, and enlargement of the HUVECs with TNF-α treatment (Figure 7.15), as 

compared with untreated cells (Figure 7.14). 

 

7.3.9 HUVEC morphology in a monolayer does not depend on substrate stiffness 

 We first measured the area of single cells with no cell-cell contacts, as a function 

of substrate stiffness, and found that single cell area increased with substrate stiffness 

(Figure 7.16A; P<0.001). We then immunostained the monolayers using a β-catenin 

antibody as a marker of cell borders (Figures 7.14 and 7.15) to evaluate the morphology 

of cells within the monolayer. As previously described in Chapter 4, cells in monolayer 

were much smaller than single cells. However, once the cells were in monolayer, cell 

area was independent of substrate stiffness, and this was true for both control and TNF-α-

activated HUVECs (Figure 7.16A). Similarly, the aspect ratio of cells within the control 

and TNF-α-activated monolayers did not depend on substrate stiffness (Figure 7.16B; 
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P>0.05). However, it was apparent that TNF-α treatment itself caused an in increase in 

both cell area (Figure 7.16A; P<0.001) and aspect ratio on all substrates (Figure 7.16B; 

P<0.001), which was in agreement with the F-actin staining (Figure 7.15). As a result of 

similar morphology, monolayers treated with TNF-α also displayed a similar cell density 

of approximately 1.7x104 cells/mm2. 

 

7.3.10 Focal adhesion size and density of HUVEC monolayers do not depend on 

substrate stiffness 

 To evaluate the amount of cell-substrate adhesion as a function of substrate 

stiffness, we immunostained the HUVEC monolayers for vinculin, a marker of focal 

adhesions (FAs) [154; See also Section 4.3.6]. Fluorescence images (Figure 7.17A) and 

subsequent processed binary images (Figure 7.17B) displayed the punctate FAs, which 

we quantified in terms of density (number per area) and area (size of individual FAs). 

While there were less FAs per area in TNF-α-activated HUVEC monolayers compared 

with the control (Figure 7.17C), neither the density nor area of FAs in both control and 

TNF-α-activated monolayers depended on substrate stiffness (Figures 7.17C and 7.17D; 

P>0.05). 
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Figure 7.14. Untreated HUVECs in monolayer form more mature F-actin stress fibers on stiffer 
substrates. HUVECs were immunostained for β-catenin (green) and stained for F-actin (red) and 
DNA (blue), and fluorescence images were taken. Scale bar is 20 µm and applies to all images. 
DNA image corresponds to same group of cells as those shown for F-actin/β-catenin. White 
arrowheads point to examples of F-actin stress fibers. 
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Figure 7.15. TNF-α-treated HUVECs in monolayer form mature F-actin stress fibers on all 
substrates. TNF-α-treated HUVECs were immunostained for β-catenin (green) and stained for F-
actin (red) and DNA (blue), and fluorescence images were taken. Scale bar is 20 µm and applies 
to all images. DNA image corresponds to same group of cells as those shown for F-actin/β-
catenin. White arrowheads point to examples of F-actin stress fibers. 
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Figure 7.16. HUVEC morphology in a monolayer does not depend on substrate stiffness. (A) 
HUVEC area was quantified for single cells, control monolayers, and TNF-α-activated 
monolayers as a function of substrate stiffness. (B) HUVEC aspect ratio was quantified for 
control and TNF-α-activated monolayers. Aspect ratio is defined as length divided by width when 
cell shape is fit to an ellipse. Bars indicate average area of N cells from 2 independent 
experiments, while error bars indicate standard error. N=115, 142, 127 for single cells on 0.87 
kPa, 5 kPa, and 280 kPa, respectively. N=8932, 8766, and 6890 for cells within control 
monolayers on 0.87 kPa, 5 kPa, and 280 kPa, respectively. N=1655, 1788, 2783 for cells within 
TNF-α-activated monolayers on 0.87 kPa, 5 kPa, and 280 kPa, respectively. ### indicates 
P<0.001 with single cells on 0.87 kPa substrate, while ^ indicates P<0.05 with single cells on 5 
kPa substrate using ANOVA. *** indicates P<0.001 using Student’s t-test. 
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Figure 7.17. HUVEC monolayer focal adhesion (FA) size and density do not depend on substrate 
stiffness. (A) HUVEC monolayers were immunostained for vinculin in order to visualize FAs. 
Images were processed and made binary (B) in order to quantify FA density (C) and area (D) as a 
function of substrate stiffness and monolayer treatment (control and TNF-α). Bars indicate 
average density or area from at least 20 images from each of 3 independent experiments, while 
error bars indicate standard error. In panel C, P>0.05 between stiffnesses for both control and 
TNF-α, using ANOVA. P<0.001 between control and TNF-α for all stiffnesses using Student’s t-
test, indicated by ***. In panel D, P>0.05 between stiffnesses for both control and TNF-α, using 
ANOVA. P>0.05 between control and TNF-α for each stiffness using Student’s t-test. Scale bar 
in A represents 20 µm and applies to panels A and B. 
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7.3.11 Neutrophil migration speed along the endothelium does not depend on 

subendothelial matrix stiffness 

 In addition to transmigration, we also wished to evaluate neutrophil migration 

along the endothelium. Figure 7.11A (primary vertical axis) shows that neutrophils did 

not all transmigrate at the same time after being added to the endothelium; they spent 

varying amounts of time migrating along the endothelium before transmigrating through 

it. On average, this time was around 5 minutes and was independent of subendothelial 

matrix stiffness (P>0.05) (Figure 7.18A). Meanwhile, the speed at which those cells 

migrated was also independent of subendothelial matrix stiffness (P>0.05) (Figure 7.18B) 

and was significantly faster than cells migrating on polyacrylamide gels alone (Figure 

6.5).  

____________________ 

 

 
 
Figure 7.18. Neutrophil migration along the endothelium prior to transmigration does not depend 
on subendothelial matrix stiffness. Shown are (A) average time that neutrophils spent migrating 
before transmigrating, as well as (B) average neutrophil speed while migrating along the 
endothelium before transmigrating, both as a function of subendothelial matrix stiffness. Bars 
indicate average, while error bars indicate standard error. For panel A, N=136, 176, and 153 for 
0.87 kPa, 5 kPa, and 280 kPa substrates, respectively. For panel B, N=60, 66, and 101 neutrophils 
for 0.87 kPa, 5 kPa, and 280 kPa substrates, respectively.  P>0.05 among all substrates in panels 
A and B using ANOVA. 
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Figure 7.19. Time to transmigrate through the endothelium varies weakly with substrate stiffness, 
and ML-7 treated neutrophils take significantly longer to transmigrate. Bars indicate average, 
while error bars indicate standard error. For control neutrophils, N=136, 176, and 153 for 0.87 
kPa, 5 kPa, and 280 kPa, respectively. N=65 for ML-7-treated neutrophils on 5 kPa. ** indicates 
P<0.01 using a Student’s t-test. ^ indicates P<0.05 with 0.87 kPa and 5 kPa using ANOVA. 
Times were measured starting at the timepoint just before the first darkened piece of cell was 
observed in phase contrast microscopy (indicating that transmigration had initiated), and ending 
at the first timepoint when the entire cell was darkened (indicating that the cell had completely 
traversed the monolayer). No data is shown for ML-7-treated neutrophils on 0.87 kPa and 280 
kPa. 
 
 
____________________ 

 

7.4 Discussion  

  Neutrophil transmigration is an important physiological process in the normal 

immune response and occurs in blood vessels whose mechanical properties likely depend 

on location within the body, size, and health. In this chapter, we evaluated the effects of 

vessel stiffness on both the endothelium properties and neutrophil transmigration. In our 

in vitro model, we observed that the fraction of transmigrating neutrophils increased with 

increasing stiffness below the endothelium, in both large vessel endothelium (HUVECs) 

and also in microvasculature endothelium (HBMECs) (Figure 7.1B). Because substrate 

stiffness is known to control many biological and biomechanical properties of cells, we 
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evaluated an array of properties of the endothelium to explain this behavior, including EC 

monolayer ICAM-1 expression, stiffness, morphology, cell-substrate adhesion, cell-cell 

adhesion, and cell contraction. Our results provide strong evidence that substrate stiffness 

changes cell-cell adhesion through MLCK-dependent cell contraction. 

 Previous work regarding neutrophil transmigration has mostly utilized glass 

(stiffness ~50 GPa) or transwell filters as substrates. It is likely that blood vessel stiffness 

depends not only on the size and health of the vessel, but also on the location within the 

body, since tissues such as brain, muscle, and tumors vary in mechanical properties [64, 

215]. Therefore, it is more physiologically relevant to perform in vitro transmigration 

experiments on softer substrates in the kilopascal range of stiffness. Here, we vary the 

substrate stiffness of the endothelium in a controlled way in order to evaluate its 

contribution to neutrophil transmigration. 

  Our results indicate that neutrophil transmigration involves an interplay between 

EC contraction, neutrophil contraction, and ICAM-1 signaling. It is known that 

neutrophil binding to ICAM-1 on the surface of the endothelium [208-210, 216] initiates 

MLCK-dependent EC contraction, which should depend on the stiffness below the 

endothelium, since cells are able to exert larger traction forces on stiffer substrates [61]. 

Here, inhibition of myosin-II dependent EC contraction by targeting myosin II or 

upstream MLCK in HUVECs not only reduced transmigration on intermediate (5 kPa) 

and stiff (280 kPa) substrates in comparison with the vehicle control, but reduced it 

nearly to the level of transmigration on soft substrates (Figure 7.12B). Meanwhile, 

transmigration on the soft (0.87 kPa) substrate was unaffected (Figure 7.12B), likely 

because contraction was already suppressed due to ECs’ inability to exert large traction 
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forces on a soft substrate [61]. Stiff substrates likely promote contraction through 

mechanotransduction events in EC integrin to extracellular matrix adhesions, possibly 

through talin activation [199]. Consistent with these results, it has been shown that 

inhibition of contraction reduces cell stiffness [217]. 

 Together, these results support the situation described by the schematic in Figure 

7.20. Contractile forces (black arrows) due to actin-myosin activation are larger on stiff 

substrates and create intercellular gaps that are more permissible for neutrophil 

penetration; contraction is suppressed by soft substrates. When MLCK is inhibited, 

contractile forces on stiff substrates are reduced, leading to less transmigration, while 

inhibition of MLCK does not further reduce contractile forces on soft substrates, leading 

to no change in transmigration. The schematic in Figure 7.21 summarizes how our results 

fit into the known MLCK-mediated signaling pathway initiated by neutrophil adhesion to 

the endothelium. The fact that neutrophil transmigration occurs primarily via the 

paracellular route (Figure 7.5) corroborates the idea that substrate stiffness-dependent 

intercellular gap formation, mediated by MLCK activation, accounts for the 

transmigration behavior. Because transcellular transmigration does not depend on 

substrate stiffness (Figure 7.5), it seems likely that MLCK inhibition reduces paracellular 

transmigration without affecting transcellular transmigration; however, further 

experiments could address this hypothesis. 
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Figure 7.20. Schematic illustrating a possible mechanism for how pretreatment of HUVEC 
monolayers with ML-7 eliminates the effects of substrate stiffness in neutrophil transmigration. 
(A) Summary of the pathway initiated by neutrophil adhesion to the endothelium, and how our 
manipulation of substrate stiffness contributes to the pathway. (B) Prior to ML-7 treatment (left), 
neutrophil adherence to the endothelium induces a signaling cascade which activates MLCK and 
results in endothelial cell contraction (black arrows) and gap formation. Because the cells can 
exert more traction on a stiffer substrate, they are capable of creating larger gaps on the stiff 
substrate, ultimately allowing more neutrophils to transmigrate through. Treatment of the 
endothelium with ML-7 (effectively inhibiting MLCK; red X in panel A) causes inhibition of 
contraction on the stiff substrate. The soft substrate is unaffected, possibly because contraction 
was already suppressed to some degree, and ML-7 treatment did not produce further effects. 
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Figure 7.21. Signaling cascade initiated by neutrophil adhesion to ECs is affected by substrate 
mechanical properties. This flowchart indicates how our results fit into the signaling cascade 
initiated by neutrophil adhesion to ICAM-1 on the endothelium. Cellular components labeled by 
** were measured here using various microscopic techniques, while those outlined with dotted 
lines were varied experimentally. Contractility-affecting drugs used in this work and affected 
molecules are indicated by red fill. Contribution of our manipulation of subendothelial matrix 
stiffness is indicated by blue fill. 
 

____________________ 

  

 TNF-α is known to increase EC permeability to macromolecules both in vivo and 

in vitro [185] through long-term reorganization of junctional proteins such as occludin, 

junctional adhesion molecule-A (JAM-A), and the membrane-associated protein ZO-1, 

and not via Rho-, ROCK- and MLCK-mediated EC contraction [187]. Specifically, 

inhibiting MLCK during TNF-α treatment does not interfere with the increase in EC 
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permeability over the 24 hour activation period [187]. Therefore, in our experiments, 

treatment of the HUVECs with ML-7 for one hour prior to transmigration assays did not 

reverse the effects of TNF-α-mediated permeability. Thus, the decrease in neutrophil 

transmigration that we observed through ML-7-treated endothelium on intermediate (5 

kPa) and stiff (280 kPa) substrates (Figure 7.12B) reflects changes in EC contraction due 

to substrate stiffness (Figures 7.20 and 7.21) and not due to a reversal of TNF-α-mediated 

permeability. 

 In explaining the result that stiff substrates promote neutrophil transmigration, we 

must also rule out possible effects of substrate stiffness on other properties of the 

endothelium. We have previously demonstrated that neutrophils are sensitive both to the 

stiffness of their substrate and also to the concentration of adhesion protein on the surface 

of their substrate (Chapter 6). In our in vitro model, prior to transmigration, the 

endothelium is the neutrophil “substrate.” Therefore, it makes sense that neutrophils 

would be sensitive to changes in either the amount of adhesion protein on the apical 

surface of the HUVECs, or to the actual stiffness of the monolayer. However, because 

ICAM-1 immunostaining indicated no change in the amount of ICAM-1 with substrate 

stiffness (Figure 7.7), it is unlikely that differences in this adhesion protein can explain 

the differences in transmigration behavior. Further, treatment with TNF-α to induce 

inflammatory conditions softened the monolayers on stiff substrates (Figure 7.8B), which 

is in agreement with previous studies on glass [37]. After this treatment, the average 

stiffness of the endothelium varied only 50-300 Pa between substrates (Figure 7.8B), 

depending on location. While the monolayer is fairly heterogeneous (Figures 4.3E, 4.3F, 

and 4.3G) it is unlikely that neutrophil mechanosensing of endothelium stiffness caused 
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an increase in transmigration from 51% to 91% from 0.42 kPa to 280 kPa, as 

mechanosensing typically occurs with changes in stiffness in the kilopascal range, not 

hundreds of pascals (Chapter 6). However, it is still possible that the small but significant 

increase in EC stiffness is a reflection of increased contractility on stiffer substrates.  

 In addition to ICAM-1 expression and cell stiffness, we also investigated whether 

HUVEC F-actin organization, morphology (area and aspect ratio), or FAs (number per 

area or size) could explain the increased transmigration on stiffer substrates; however, 

none of these properties could account for the behavior (Figures 7.14, 7.15, 7.16, and 

7.17; further discussion starts in the following paragraph). Finally, neutrophils adhered to 

and migrated with similar speeds on all endothelium regardless of substrate stiffness, 

indicating that their ability to move to a suitable location for transmigration was not 

hindered on soft substrates (Figure 7.18). 

 As neutrophils transmigrate through ECs, they depolymerize and rearrange the 

EC actin cytoskeleton locally [112]. Substrate stiffness has been shown to regulate F-

actin architecture in single cells; specifically, single ECs on stiffer substrates develop 

more organized, well-developed stress fibers [73]. Here, we showed that F-actin 

arrangement in the control (no TNF-α) endothelium also depended on substrate stiffness 

in a way similar to single cells (Figure 7.10). It could potentially be more difficult for a 

neutrophil to traverse a more actin-dense monolayer, such as the control monolayers on 

stiff substrates (Figure 7.14). While neutrophils are capable of transmigrating through 

both the transcellular and paracellular pathways (Figures 7.2, 7.3, and 7.4), they prefer 

the paracellular (between cell-cell junctions) route (Figure 7.5, see also ref. [84]), where, 

in the control monolayers, the actin appeared most dense (Figure 7.14). However, TNF-α 
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abrogated the effects of substrate stiffness on actin cytoskeleton, as stress fibers on all 

substrates were well-developed, aligned, and oriented throughout the entire cell, not just 

at the cell periphery (Figure 7.15). In this case, neutrophils encountered an equally-dense 

actin cytoskeleton on all substrate stiffnesses, indicating that differences in HUVEC F-

actin arrangement cannot account for the transmigration behavior.  

 Because neutrophils preferentially use the paracellular route for transmigration 

(Figure 7.5, see also ref. [84]), it is possible that the morphology of individual HUVECs 

within the monolayer directs the frequency of transmigration. For example, HUVEC area 

or aspect ratio could influence the probability of a neutrophil being at the HUVEC cell 

borders versus middle at any given time, thus directing its ability to transmigrate, 

assuming the paracellular route is preferential. However, we did not observe differences 

in area (Figure 7.16A) or aspect ratio (Figure 7.16B) of individual HUVECs within 

control or TNF-α-activated monolayers, indicating that differences in EC morphology 

within the monolayer do not contribute to substrate stiffness-dependent neutrophil 

transmigration. 

 It is clear that activation of the inflammatory response by TNF-α induces many 

morphological changes in the endothelium, including F-actin rearrangement (Figure 

7.15), local cell alignment (Figure 7.15), enlargement (Figure 7.16A), and elongation 

(Figure 7.16B) of HUVECs within the monolayer. These TNF-α-mediated changes in cell 

morphology are Rho/ROCK dependent, as they are prevented by ROCK inhibition [187]. 

TNF-α also induces phosphorylation of focal adhesion kinase and paxillin [218], and 

causes cytoskeletal rearrangement (Figure 7.15), possibly by activation of the small 

guanosine-trisphosphate (GTP)-binding proteins Rho, Rac, and Cdc42 [52]. Thus, in 
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addition to ICAM-1 upregulation and junctional protein reorganization, TNF-α also 

induces many cellular morphological changes, though those changes do not depend on 

substrate stiffness (Figures 7.14, 7.15 and 7.16).  

 The large holes in the endothelium that we observed as a result of neutrophil 

transmigration on stiff substrates (Figures 7.9B, 7.9C, and 7.9D) suggest three 

possibilities: (1) there was less EC-substrate adhesion on stiff substrates, (2) there was 

less endothelial cell-cell adhesion on stiff substrates, or (3) increased transmigration 

resulted in elevated neutrophil protease activity, causing cleavage of cell-substrate and 

cell-cell adhesions on stiff substrates. Because initial FA patterns were the same with 

substrate stiffness, as measured by vinculin punctate staining (Figure 7.17), we ruled out 

the first explanation. However, it could still be possible that neutrophil adhesion and 

subsequent transmigration caused rearrangement of the endothelium FA structure as a 

function of substrate stiffness. Evidence for this arises from Figure 7.10, where a change 

in neutrophil morphology, transitioning from protrusive to round, likely disrupted EC-

substrate adhesions. This would be an interesting avenue for future exploration. 

Secondly, a reduction in cell-cell adhesion on stiff substrates may partially explain hole 

formation. The result that neutrophil transmigration was increased on soft substrates, but 

not stiff substrates, by decreasing cell-cell adhesion with a VE-cadherin antibody (Figure 

7.12A) suggests that cell-cell adhesion was compromised on stiff substrates to a greater 

degree than soft substrates following TNF-α treatment; this could promote hole formation 

as well as neutrophil transmigration. 

 A third explanation for the formation of holes in the monolayers could be due to 

protease release by the neutrophils as they migrated between the gels and the 
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endothelium. Neutrophil injury to the endothelium has previously been observed in vitro 

[219, 220], and can be inhibited by tryptic, elastase, and serine protease inhibitors [220]. 

In this case, hole formation on the stiff substrates could be due to the fact that nearly 

twice as many neutrophils transmigrated in comparison with soft substrates (Figure 

7.1B), resulting in more proteases. To address this, we simply halved the number of 

neutrophils added to the surface of the endothelium (10x105 to 5x105) and observed 

transmigration (Figure 7.11A). Interestingly, holes still formed with 5x105 neutrophils, 

and were similar in density and size to 10x105 neutrophils (Figures 7.11B and 7.11C), 

indicating that it was not simply the number of transmigrated neutrophils which 

influenced hole formation on the stiff substrates. Thus, it seems plausible that increased 

contractile forces in ECs on stiff substrates promote retraction as neutrophil proteases act 

on the ECs. Further evidence for this hypothesis is our observation that ML-7 inhibits 

hole formation in ECs on stiff substrates. 

 Further reduction of the number of neutrophils plated (2x105) eliminated hole 

formation, signifying that neutrophils were responsible for hole formation, and that a 

threshold number were needed. Interestingly, the kinetics of hole formation aligned with 

neutrophil transmigration; that is, hole formation began around 25 minutes after plating 

neutrophils, about the same time when a maximum fraction of neutrophils had 

transmigrated (Figure 7.11A). Thus, it is likely that protease release by neutrophils, in 

combination with increased contractile forces to promote retraction in ECs on stiffer 

substrates, led to significant EC injury. The following experiment was used to further test 

this hypothesis.  
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 First, neutrophils were plated onto EC monolayers on soft (0.87 kPa) and stiff 

(280 kPa) substrates and given 40 minutes to interact with the endothelium. During this 

time, neutrophils were presumably releasing proteases. After 40 minutes, the solution 

from each of the dishes was collected from the dish and centrifuged, and the (cell-free) 

supernatant, which should have contained any proteases released into the media during 

the 40 minute interaction period, was isolated. Then, this conditioned media from the 

0.87 kPa substrate was added to a fresh monolayer on a 280 kPa substrate (without 

neutrophils), while the conditioned media from the 280 kPa substrate was added to a 

fresh monolayer on a 0.87 kPa substrate (also without neutrophils). Thus, this experiment 

allowed us to test whether the difference in hole production with substrate stiffness could 

have been a result of differential protease production. Interestingly, no holes formed on 

either substrate, indicating that the physical interaction of neutrophils with the 

endothelium was necessary for holes to form. Thus, we propose the holes formed due to a 

combination of (a) protease release by neutrophils, (b) the physical interaction of 

neutrophils with the endothelium, and (c) the increased contractility of ECs on stiffer 

substrates.  

So far in this discussion we have focused on the physical state of the endothelium 

and showed that it plays a significant role in neutrophil transmigration. However, the 

biophysical properties of neutrophils are also important contributors to this complex 

process. For example, in Figure 7.12, we displayed that MLCK-mediated contraction in 

neutrophils also contributes to the ability of neutrophils to transmigrate. However, 

interestingly, neutrophil transmigration is not completely blocked upon inhibition of 

MLCK (Figure 7.12B). While we cannot rule out the possibility that MLCK may not 
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have completely been inhibited, we hypothesize that neutrophil actin polymerization still 

allows the neutrophils to complete transmigration; if this is true, then we expect that the 

timescale for transmigration is different. Indeed, on 5 kPa gels, the time for neutrophils to 

traverse the monolayer was significantly longer for ML-7-treated neutrophils than 

untreated neutrophils (Figure 7.19), suggesting a different or modified mechanism for 

transmigration.  Also in support of this hypothesis is the fact that treatment of neutrophils 

with latrunculin, an acting-disrupting drug, completely abolished neutrophil 

transmigration.  

Interestingly, the average time for untreated neutrophils to complete 

transmigration varied only slightly with subendothelial matrix stiffness, though it was 

statistically shorter for neutrophils transmigrating through ECs on 280 kPa, in 

comparison with 0.87 kPa and 5 kPa (Figure 7.19). This suggests that as long as they 

have the mechanical machinery intact (i.e. mechanisms for contraction and actin 

polymerization), and once they find a suitable place on the endothelium for 

transmigration, they complete the process within a similar amount of time, regardless of 

the substrate.  

 In addition, the result that transmigration of ML-7-treated neutrophils was not 

completely blocked on soft substrates suggests that ICAM-1 levels (and likely other 

signaling molecules such as platelet EC adhesion molecule-1, PECAM-1) were high 

enough to support transmigration, even though neutrophil contraction was inhibited by 

drug treatment and EC contraction was reduced by substrate stiffness. Indeed, ICAM-1 is 

an important player and is necessary for transmigration, as the fraction of transmigrated 

neutrophils was directly related to the amount of ICAM-1 on the surface of the 
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endothelium, even on stiff substrates where contraction was higher (Figure 7.6). 

Specifically, when the ECs were not treated with TNF-α (low ICAM-1), we observed 

only ~1% transmigration on all substrates (Figure 7.6). These results provide evidence 

that even though EC contraction promotes transmigration, it alone is not sufficient to 

support transmigration – signaling by adhesion molecules such as ICAM-1 is also 

necessary.   

A technical issue that we must address is the possibility that ML-7 leached out 

from the ECs after treatment and affected the neutrophils. Indeed, treatment of 

neutrophils (without treating the ECs) with ML-7 reduces transmigration on all substrates 

(Figure 7.12B). These results indicate that if leaching did occur after EC treatment with 

ML-7, we would see a reduction in transmigration on all substrates, not just the stiff ones. 

However, we only observed a decrease in transmigration on stiff substrates, while 

transmigration on soft substrates was unaffected, signifying that leaching of ML-7 from 

the ECs did not occur.  

 

7.5 Conclusions 

In summary, we have developed an in vitro model of the vascular endothelium 

using polyacrylamide gels of varying stiffness to investigate the effects of vasculature 

stiffness, both on the endothelium and on neutrophil transmigration. Interestingly, we 

observed a linear increase in transmigration from very soft (0.42-0.87 kPa) to the 

“healthy” range of subendothelial layer stiffness (3-5 kPa), reaching a threshold value in 

the “disease” stiffness range, from 13 or 280 kPa (Figures 7.1B and 7.1C).  
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 Our results provide strong evidence that neutrophil transmigration is regulated by 

MLCK-mediated generation of intercellular gaps through EC contraction, and that 

substrate stiffness mediates this response. Neutrophil transmigration also promotes EC 

retraction and large hole formation in endothelium on stiff substrates, an event which is 

further indicative of increased contractility. Myosin light chains may also be 

phosphorylated by Rho kinase during neutrophil transmigration [221] (Figure 7.21), and 

therefore further experiments could test whether Rho kinase-dependent cell contraction 

also plays a role in how the endothelium substrate stiffness affects neutrophil 

transmigration.  

 Our results suggest that neutrophil transmigration may vary with blood vessel 

mechanical properties, depending on location within the body and size. Further, these 

results may be associated with cardiovascular disease biology, where increased vascular 

stiffness is coupled with increased leukocyte transmigration. In addition, this work may 

be relevant to cancer cell metastasis or stem cell homing, both of which involve cell 

transmigration across the endothelium. While this chapter focused on transmigration 

through TNF-α-activated endothelium, in the next chapter (Chapter 8), we quantify the 

effects of subendothelial matrix stiffness on neutrophil transmigration through an 

endothelium that has been treated with oxLDL, another important physiological factor 

relevant to cardiovascular disease. 
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8 OxLDL and subendothelial matrix stiffness promote 
neutrophil transmigration through enhanced endothelial cell 
ICAM-1 and contractility † 
 
8.1 Introduction 

 Oxidation of low-density lipoproteins (LDLs) in the body has been correlated 

with various pathological conditions, including atherosclerosis, diabetes mellitus, and 

autoimmune diseases (for review, see [222]). Elevated oxidized low density lipoproteins 

(oxLDL) levels in the bloodstream have been identified as a risk factor for development 

of coronary artery disease and plaque formation [223-227]. Exposure of the vascular 

endothelium to oxLDL leads to endothelial cell (EC) damage and dysfunction, including 

disruption of cell-cell adhesion [228, 229], as well as impairment of nitric oxide release 

[230]. Interestingly, in vivo studies have demonstrated that oxLDL affects both large 

vessels and microvasculature and promotes leukocyte adhesion and transmigration in 

microvasculature [229, 231, 232]. In addition, EC exposure to oxLDL enhances 

monocyte invasion through the endothelium in vitro [110]. These changes in EC-

leukocyte interactions are likely partially due to upregulation of adhesion molecules 

necessary for leukocyte adherence and transmigration, including intercellular cell 

adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and 

platelet endothelial cell adhesion molecule-1 (PECAM-1) [110, 233, 234]. 

 In addition to increased adhesion molecule expression, EC exposure to oxLDL 

also leads to reorganization of lipid rafts, as indicated by loss of the lipid raft marker 

____________________ 

† This chapter has been submitted for publication as Stroka, K.M., I. Levitan, and H. Aranda-Espinoza, 
OxLDL and substrate stiffness promote neutrophil transmigration through enhanced endothelial cell 
ICAM-1 and contractility, Journal of Biomechanics (under review). 
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GM1 [32], and to changes in lipid order, as observed by Laurdan two-photon imaging 

[235]. Concurrently, the cells also undergo changes in biomechanical properties, 

including increased contractility [32], stiffness [32, 33], and ability to realign with flow 

[236]. It has been proposed that oxLDL acts as a cholesterol acceptor, removing 

cholesterol from the plasma membrane [32, 236]. Indeed, increases in cell stiffness [31, 

32] and traction forces [154] have also been measured in cholesterol-depleted cells, 

though actin-disrupting drugs abrogate this cell stiffening [31]; these results support the 

idea that oxLDL exposure or direct cholesterol removal triggers biomechanical changes 

through modification of the plasma membrane-cytoskeleton complex [31].  

 While the above-mentioned work demonstrates that oxLDL affects the 

biomechanical properties of the endothelium, there is also evidence that the 

subendothelial layers of blood vessels stiffen in cardiovascular disease. Clinically, pulse 

wave velocity measurements have demonstrated increased vasculature stiffness in 

patients with atherosclerosis or hypertension [115, 116], and because these waves also 

reflect deep into microvasculature, it is believed that there is also a change in 

microvasculature stiffness. However, these measurements are unable to specify which 

parts of the blood vessel change biomechanically. Several in vitro studies have recently 

addressed this issue by scraping away the endothelium, or by cross-sectioning the artery 

to measure the media layer. Using these methods, the reported stiffness of healthy 

subendothelial matrices has ranged from 2.5 kPa to 8 kPa [43, 119, 120], while arteries in 

ApoE-null mice, a model for atherosclerosis, are much stiffer, around 28 kPa [119]. 

These experiments indicate that the mechanical properties of the subendothelial matrix in 

vasculature vary significantly in cardiovascular disease. In addition, it is possible, though 
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not yet proven, that the stiffness of microvasculature in a particular tissue varies with the 

stiffness of that tissue; for example, brain is very soft (300-500 Pa), while collagenous 

bone is much stiffer (~100 kPa) [64, 122]. 

Using an in vitro model of the vascular endothelium, we have previously shown 

in Chapter 7 that stiffer EC substrates promote neutrophil transmigration through tumor 

necrosis factor-α (TNF-α)-activated endothelium (Figure 7.1). This substrate stiffness-

dependent transmigration is due to biophysical changes that occur in the endothelium; 

stiffer substrates support larger myosin light chain kinase (MLCK)-mediated contractile 

forces upon neutrophil adherence to the endothelium. Presumably, larger contractile 

forces lead to formation of intercellular gaps that promote transmigration. Also in 

Chapter 7, we showed that the fraction of transmigrated cells depends on the amount of 

ICAM-1 available for binding on the surface of the ECs, independent of substrate 

stiffness (Figure 7.6). Because oxLDL exposure also leads to upregulation of ICAM-1 

and increased contractility in ECs, we hypothesized that treatment of the endothelium 

with oxLDL also affects transmigration in a substrate stiffness-dependent way.  In 

particular, we wanted to explore transmigration of neutrophils, which primarily 

transmigrate in microvasculature, where oxLDL exposure has been shown to affect 

leukocyte-EC interactions, and where vessel stiffening is relevant in cardiovascular 

disease.  

In this work we used the in vitro model of the vascular endothelium (see Chapters 

3 and 7) to explore the interplay between oxLDL and substrate stiffness in neutrophil 

transmigration. We prepared fibronectin-coated polyacrylamide gels of varying 

physiological stiffness (0.87 kPa, 5 kPa, and 280 kPa). Human umbilical vein endothelial 
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cells (HUVECs) formed confluent monolayers on these substrates, and we subsequently 

treated the HUVECs with 25 µg/mL oxLDL, which is within the physiological range for 

patients with coronary artery disease (4). After 24 hours, oxLDL treatment increased 

ICAM-1 expression on all substrates, though the final amount of ICAM-1 was 

independent of substrate stiffness. We plated human neutrophils onto the surface of the 

endothelium and found that oxLDL treatment of the endothelium promoted 

transmigration on all substrates, and stiff substrates further promoted transmigration. 

Inhibition of MLCK-dependent contractile forces reduced transmigration on all substrates 

and eliminated the dependence of substrate stiffness on transmigration. These results 

provide further evidence that efficient transmigration requires both ICAM-1 expression 

and EC contractile forces, and that exposure of the vascular endothelium to oxLDL in 

cardiovascular disease has significant implications for the immune response in stiffening 

blood vessels. 

 

8.2 Materials and methods 

8.2.1 Preparation of substrates 

Thin (~80 µm) polyacrylamide gel substrates were prepared on activated 

coverslips as first described by Wang and Pelham [198] and as used previously in our 

work (Sections 6.2.1 and 7.2.1; see also ref. [122]). Concentrations in this work included 

15% acrylamide + 1.2% bis (280 kPa), 8% acrylamide + 0.07% bis (5 kPa), and 3% 

acrylamide + 0.1% bis (0.87 kPa). After sulfo-SANPAH treatment and UV activation, 

gels were coated with 0.1 mg/mL fibronectin, also as previously described in our work 

(Sections 6.2.1 and 7.2.1; see also ref. [122]). Dynamic mechanical analysis and atomic 
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force microscopy were used to measure the mechanical properties of the gels, while 

immunofluorescence staining was used to characterize the surface-bound fibronectin in 

order to ensure equal protein amounts with varied gel stiffness (Section 6.2.3; see also 

ref. [122]). 

 

8.2.2 Cell culture and treatments 

HUVECs were purchased from Lifeline Cell Technology (Walkersville, MD) and 

cultured as previously described (Section 4.2.1). Cells (passages 2-5, 4x105 total) were 

plated onto fibronectin-coated polyacrylamide gels and formed monolayers within 2 

days, as previously described in Section 7.2.2. After 2 days, cells were treated with 25 

µg/mL oxLDL for the final 24 hours prior to transmigration experiments. In some assays, 

cells were treated with oxLDL for only the final hour prior to experiments. To inhibit 

MLCK, HUVECs were pre-treated with 10 µM ML-7 (Sigma, St. Louis, MO) for 8 

minutes prior to transmigration assays. For removal of cholesterol, HUVECs were pre-

treated with 5 mM methyl-β-cyclodextrin (MβCD; Fisher Scientific) for one hour prior to 

transmigration assays. To block ICAM-1, cells were pre-treated with 10 µg/mL 

monoclonal anti-human ICAM-1 (R&D Systems BBA3, Minneapolis, MN) for one hour 

prior to transmigration assays. 

 

8.2.3 Cholesterol reagents 

Normal human plasma, prepared in acid citrate dextrose, was purchased from a 

blood bank (Life Source, Chicago). LDL was isolated by sequential centrifugation in KBr 

between the density ranges 1.019 to 1.063g ml-1. The preparation was dialyzed against 
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three changes of 10mM Tris/HCl buffer, pH 7.4, containing 0.15 M NaCl and 1 mM 

EDTA at 4°C to remove KBr. To proceed to the copper oxidation, the further dialysis 

against PBS (pH 7.4) was performed to reduce the EDTA presence. Copper sulfate was 

then added to LDL with a final concentration of 25 µM. The oxidation was set in 37°C 

for 16 hours and stopped by adding 1 mM EDTA. Oxidation level of oxLDL was assayed 

by measuring the content of thiobarbituric acid-reactive substances (TBARS) in LDL and 

oxLDL by using TBARS Assay Kit (ZeptoMetrix, Buffalo, NY). The average TBARS 

value was 21.8±5.1 nanomoles per MDA per milligram of LDL protein for oxLDL. 

 

8.2.4 Transmigration assays 

Neutrophils were isolated from human blood as previously described in Section 

6.2.4. Protocols were approved by the University of Maryland Institutional Review 

Board. Transmigration experiments were completed also as previously described in 

Section 7.2.3. Following oxLDL treatment, HUVECs were washed thoroughly with PBS, 

and fresh regular HUVEC media was added. Neutrophils (~1x106 total) were added to the 

HUVEC monolayer and allowed to gravitate to the EC apical surface for about 30-60 

seconds. Phase contrast microscopy was used to capture timelapse images of the EC-

neutrophil interactions for 30 minutes. Microscopy was completed at 37°C, 5% CO2 and 

55% humidity using an inverted microscope (Olympus IX71, Center Valley, PA). Images 

were captured with a QImaging Retiga-SRV charge-coupled device (CCD) digital camera 

(QImaging Corporation, Surrey, British Columbia, Canada) using IPLab software 

(Becton, Dickinson and Company, Franklin Lakes, NJ). Fraction of neutrophil 

transmigration was quantified, as previously described (Section 7.2.3), by dividing the 
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number of neutrophils which transmigrated any time during the 30 minute timelapse by 

the total number of neutrophils in the first frame of that sequence. Neutrophils which 

entered or exited the field of view after the first frame of the sequence were not counted. 

All experiments were repeated at least 3 times. Hole area and density were quantified as 

previously described (Section 7.2.3). 

 

8.2.5 Cell staining 

 HUVECs were fixed, blocked for non-specific binding, and immunostained for 

ICAM-1 as previously described (Section 7.2.4). Alternatively, HUVECs were fixed, 

permeabilized, blocked for non-specific binding, and immunostained with antibodies to 

β-catenin to label cell borders, or stained with phalloidin-TRITC to label F-actin, both as 

previously described in Section 7.2.4. Fluorescence microscopy was completed at room 

temperature on immunostained HUVECs using an inverted microscope (Olympus IX81). 

Images were captured with a Hamamatsu ORCA-ER CCD digital camera (Leeds 

Precision Instruments, Minneapolis, MD) using Slidebook software (Intelligent Imaging 

Innovations, Inc., Denver, CO). 

 

8.2.6 Statistical analysis  

Student’s t-tests were used to perform statistical analysis on pairs of data, while 

analysis of variance (ANOVA) was used among groups of data, where P<0.05 indicated 

statistical significance. Following ANOVA, Tukey’s honestly significant difference 

criterion was used for multiple comparisons. All measurements reported in this article are 

in the format mean ± standard error. 
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8.3 Results 

8.3.1 Stiff substrates promote neutrophil transmigration through oxLDL-treated 

HUVECs 

 Using our in vitro model of the vascular endothelium, we observed activation of 

neutrophils (Figure 8.1A; white arrowheads) and subsequent transmigration through 

oxLDL-treated HUVECs using phase contrast microscopy (Figure 8.1A, bottom). 

Meanwhile, few neutrophils on untreated HUVECs were activated (Figure 8.1A, top). 

Neutrophils on top of the endothelium appeared bright white, while transmigration events 

could be identified by the phase-darkened portions of the neutrophils between the 

endothelium and the gel (Figure 8.1A, bottom; white arrows). We found that 24-hour 

treatment of HUVECs with oxLDL promoted neutrophil transmigration on all substrates, 

in comparison with untreated HUVECs (P<0.001) (Figure 8.1B). In addition, 

transmigration increased with the stiffness of the substrate below the endothelium (Figure 

8.1B), from 26% transmigration through ECs on 0.87 kPa, to 54% on 5 kPa (P<0.01). 

Transmigration on even stiffer substrates (280 kPa) was about 41% and was not different 

from 5 kPa (P>0.05). Meanwhile, 1-hour treatments of oxLDL or MβCD in the 

endothelium did not lead to neutrophil transmigration, similar to untreated ECs. Some 

neutrophils (~15%) were not activated after being plated onto an oxLDL-treated 

endothelium, but the fraction not activated was independent of substrate stiffness (Figure 

8.1C). 
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Figure 8.1. Stiffer substrates promote neutrophil transmigration through oxLDL-treated 
HUVECs. (A, top) Phase contrast time sequence of two neutrophils on untreated HUVECs. Cell 
labeled with “1” does not activate, while cell labeled with “2” does activate, as indicated by 
protrusive morphology (white arrowheads). (A, bottom) Also shown is a phase contrast time 
sequence of two neutrophils on 24-hour oxLDL-treated HUVECs. Cell labeled with “3” 
transmigrates through the endothelium (portion beneath the endothelium indicated by white 
arrow), while cells labeled with “4” is activated (white arrowheads) but does not transmigrate. 
Transmigration is indicated by a change in phase from bright white (on top of the endothelium) to 
darkened (between the endothelium and the gel; white arrows). T=0 corresponds to the time when 
transmigration begins in cell 1. Scale bar is 10 µm and applies to all images. Both untreated (top) 
and oxLDL-treated (bottom) are on 5 kPa substrate. (B) Fraction of transmigrated neutrophils 
through untreated or oxLDL-treated HUVECs, as a function of substrate stiffness. **, P<0.01, 
one-way ANOVA followed by Tukey’s honestly significant difference criterion. Bars are 
averages of at least 8 experiments, while error bars indicate standard error. (C) Fraction of 
neutrophils not activated as a function of substrate stiffness. Bars are averages of 4 experiments, 
while error bars indicate standard error. P>0.05 by ANOVA. 
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8.3.2 ICAM-1 expression on oxLDL-treated HUVEC monolayer apical surface is 

independent of substrate stiffness 

 We have previously shown that neutrophil transmigration is proportional to the 

amount of ICAM-1 available for binding on the surface of TNF-α-activated endothelium 

(Figure 7.6). To evaluate the amount of ICAM-1 on the apical surface of the oxLDL-

treated endothelium, we immunostained non-permeabilized HUVECs, captured 

fluorescence images, and quantified fluorescence intensity as a function of substrate 

stiffness (Figures 8.2A and 8.2B). For both untreated and 24-hour oxLDL-treated 

HUVECs, ICAM-1 intensity was independent of substrate stiffness (P>0.05), though on 

all substrates there was an increase in ICAM-1 expression after 24 hours of oxLDL 

treatment (P<0.05) (Figures 8.2A and 8.2B). 

 

8.3.3 Blocking ICAM-1 eliminates oxLDL-induced transmigration on all substrates 

 To evaluate the role of oxLDL-induced ICAM-1 expression in neutrophil 

transmigration, ICAM-1 on the apical surface of the endothelium was blocked using an 

ICAM-1 antibody. In this blockade assay, neutrophil transmigration was significantly 

reduced to the level of the untreated controls (Figure 8.2C). Further, blocking ICAM-1 

eliminated the effects of substrate stiffness on transmigration, as there was no difference 

in transmigration between the substrates. 
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Figure 8.2. ICAM-1 expression is enhanced in oxLDL-treated HUVECs, and blocking ICAM-1 
significantly reduces transmgiration on all substrates. (A) HUVECs were immunostained for 
ICAM-1 and fluorescence images were taken at many different locations across each of at least 3 
different monolayers for each substrate. Bars indicate average, while error bars indicate standard 
error. P>0.05 by ANOVA across substrates for untreated and oxLDL-treated HUVECs. For each 
substrate, * indicates that P<0.05 between control and oxLDL using a t-test. (B) Representative 
fluorescence images of HUVEC monolayers immunostained for ICAM-1. Scale bar is 20 µm and 
applies to all images in panel B. (C) HUVECs were treated with an ICAM-1 antibody and 
neutrophil transmigration was quantified as a function of substrate stiffness. Bars indicate 
average, while error bars indicate standard error of at least 3 experiments. No statistical difference 
was found between the untreated and oxLDL-treated HUVECs, nor was there any dependence on 
substrate stiffness for either case (P>0.05). 
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8.3.4 Neutrophil transmigration injures the oxLDL-treated endothelium on stiff 

substrates 

 OxLDL is known to cause EC dysfunction, and here we investigated how 

subsequent leukocyte transmigration through the endothelium might further damage the 

ECs. In untreated or 1 hour oxLDL-treated ECs (the cases where there was <1% 

transmigration), we observed intact monolayers up to 2 hours after addition of 

neutrophils. Remarkably, we observed formation of large holes, on the order of thousands 

of square microns, after neutrophil transmigration through oxLDL-treated endothelium 

(Figure 8.3). Both the size of the holes (P<0.001) and number per area (P<0.01) increased 

with increasing EC substrate stiffness (Figures 8.3A and 8.3B). By 2 hours after plating 

neutrophils, holes did not reseal; in fact, holes on 280 kPa were significantly larger than 

at 1 hour (P<0.001; Figure 8.3B). Histograms of hole area at 1 hour and 2 hours (Figures 

8.3C and 8.3D) indicate that at 2 hours, there were about half as many small holes (~1000 

µm2) in comparison with 1 hour; meanwhile, there was a greater amount of larger holes at 

2 hours. Monolayers on soft substrates (0.87 kPa) were usually still intact 1 hour after 

plating neutrophils (Figure 8.3E), while monolayers on stiffer substrates (5 kPa and 280 

kPa) were severely disrupted (Figure 8.3F).  

 

8.3.5 OxLDL treatment induces EC stress fiber formation on all substrates 

 We observed oxLDL-treated HUVEC morphology and found no visible changes 

as a function of substrate stiffness (Figure 8.4A). We also labeled F-actin and observed 

mature stress fibers in oxLDL-treated HUVECs on all substrates (Figure 8.4B). These 
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results can be compared with untreated cells that developed less stress fibers on softer 

substrates (Figure 8.4B). 

____________________ 

 

Figure 8.3. Stiff substrates promote hole formation in the oxLDL-treated endothelium following 
neutrophil transmigration. (A) Quantification of hole density as a function of subendothelial 
matrix stiffness at 1 hour and 2 hours after plating neutrophils. ** indicates P<0.01 by ANOVA 
followed by Tukey’s honestly significant difference criterion. Bars are averages of 4 experiments, 
while error bars indicate standard error. (B) Quantification of hole area as a function of substrate 
stiffness at 1 hour and 2 hours after plating neutrophils. *** indicates P<0.001 with 5 kPa at 1 
hour, while ^^^ indicates P<0.001 with 5 kPa at 2 hours. In addition, P<0.001 between hole areas 
at 1 hour and 2 hours for 280 kPa. (C) Histogram of hole areas for HUVECs on 280 kPa at 1 hour 
after plating neutrophils. (D) Histogram of hole areas for HUVECs on 280 kPa at 2 hours after 
plating neutrophils. (E) Phase contrast image of mostly intact HUVEC monolayer on a soft (0.87 
kPa) substrate, 1 hour after plating neutrophils. (F) Phase contrast image of HUVEC monolayer 
on a stiff (280 kPa) substrate, 1 hour after plating neutrophils. Large holes have formed in the 
monolayer. Scale bar is 50 µm and also applies to panel E. 
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Figure 8.4. HUVEC morphology in the monolayer is independent of substrate stiffness. (A) 
OxLDL-treated HUVEC monolayers on all substrates were immunostained for β-catenin as a 
marker of cell borders. (B) Untreated and oxLDL-treated HUVEC monolayers were stained for F-
actin. Scale bar for panel A, β-catenin images, is 50 µm, while scale bar for panel B, F-actin 
images, is 20 µm. Substrate stiffness is indicated at the top of each column. 
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8.3.6 Inhibition of MLCK-mediated EC contraction normalizes effects of substrate 

stiffness 

Previously, we have shown that MLCK-mediated EC contraction promotes 

neutrophil transmigration through TNF-α-activated endothelium (Chapter 7). Here, we 

wished to evaluate the possible mechanism by which substrate stiffness promotes 

neutrophil transmigration through oxLDL-treated endothelium. We hypothesized that 

MLCK was also playing a role in this case, and therefore we suppressed contraction in 

the HUVECs by pretreating the monolayers with 10 µM ML-7 to inhibit MLCK. In these 

experiments, neutrophil transmigration was significantly reduced on all substrates, but 

there was no dependence of transmigration on substrate stiffness (Figure 8.5). Further, 

inhibition of MLCK prevented hole formation in the endothelium after neutrophil 

transmigration. Interestingly, a higher concentration of ML-7 (15 µM) completely 

disrupted the monolayer even before adding neutrophils, while a lower concentration (5 

µM) had no effect on transmigration.  

 

 

____________________ 

 

 

Figure 8.5. Inhibition of MLCK-mediated EC contraction reduces transmigration on all 
substrates and normalizes the effects of substrate stiffness. HUVECs were pretreated with ML-7 
to inhibit MLCK and neutrophil transmigration was quantified for each substrate. Bars indicate 
average, while error bars indicate standard error of at least 3 experiments. Statistical significance 
between oxLDL-treated HUVECs and oxLDL+ML-7-treated HUVECs is indicated by * 
(P<0.05), ** (P<0.01), or *** (P<0.001). 
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____________________ 

 

8.4 Discussion 

 Elevated levels of oxLDL in the bloodstream and increased vasculature stiffness 

are both associated with cardiovascular disease in patients. Here, we used an in vitro 

model of the vascular endothelium to explore the combined effects of oxLDL exposure 

and subendothelial matrix stiffening on neutrophil transmigration. Leukocyte 

transmigration is a complicated biophysical process and requires an interplay between 

signaling events and mechanical forces (Chapters 2 and 7) and thus we hypothesized that 

the immune response would depend on both EC oxLDL exposure and substrate stiffness. 

Indeed, we observed that oxLDL exposure of the endothelium promoted transmigration 

on all substrates, with stiff substrates further promoting transmigration (Figure 8.1B). 

 Though EC contractility is enhanced even after only 1-hour exposure to oxLDL 

[32], we observed few activated neutrophils and no transmigration after this treatment, 

indicating that contractility by itself does not promote transmigration. After 24 hours of 
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oxLDL treatment, ICAM-1 expression was enhanced on the apical surface of the 

endothelium on all substrates (Figures 8.2A and 8.2B), in agreement with previous 

reports [234]. Blocking ICAM-1 after oxLDL treatment reduced transmigration down to 

the amount through untreated endothelium (Figure 8.2C), indicating that enhanced 

ICAM-1 expression following oxLDL treatment accounted for the increase in neutrophil 

transmigration that we observed in comparison with untreated cells (Fig 8.1B). Further 

evidence of similarities of ICAM-1 expression with substrate stiffness comes from our 

result that the fraction of non-activated neutrophils did not depend on substrate stiffness 

(Figure 8.1C). OxLDL treatment of ECs has previously been shown to enhance monocyte 

transmigration by about 20% compared to controls in transwell assays [237]. Due to 

differences in experimental methods, it is difficult to compare this increase in 

transmigration with our results for neutrophil transmigration (Figure 8.1B); however, it is 

evident that the general trend is the same for neutrophils and monocytes. 

 Not only did 24-hour oxLDL treatment promote transmigration, but it did so in a 

substrate stiffness-dependent manner, with stiff substrates (5 kPa and 280 kPa) further 

promoting transmigration (Figure 8.1B). Recently, direct measurements of traction forces 

in islands of ~15 ECs demonstrated larger contractile forces in EC monolayers on stiffer 

substrates [238]. Thus, increased EC contraction on stiffer substrates leads to more 

transmigration (Figure 8.1B) in the presence of the same amount of ICAM-1 (Figures 

8.2A and 8.2B). This is the same trend we found for transmigration through TNF-α-

activated endothelium (Chapter 7) though the fractions of transmigration through oxLDL-

treated ECs were reduced by about half in comparison with those for TNF-α-activated 

ECs for all substrates (Figures 8.1B and 7.1B). It is possible that the differences in 
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neutrophil transmigration between oxLDL treatment and TNF-α treatment are due to 

variance in ICAM-1 expression or cell contractility, or both, though further experiments 

would be necessary to corroborate that hypothesis. However, it is clear that both 

treatments point to an interplay between adhesion molecules such as ICAM-1 and 

contractility (substrate stiffness) to mediate transmigration. 

F-actin staining revealed stress fiber formation in EC monolayers on all 

substrates, including 0.87 kPa (Figure 8.4). These results can be compared with F-actin 

organization in untreated HUVEC monolayers, where we observed more stress fibers on 

stiffer substrates (Figure 8.4B). Stress fibers are necessary for cell contraction, suggesting 

that oxLDL increased contraction on all substrates in comparison with untreated cells, 

before addition of neutrophils. However, F-actin organization by itself cannot be used as 

a measure of contractility. Here, increased transmigration (Figure 8.1B) and hole 

formation (Figure 8.3) on stiff substrates are both indicators of larger contractile forces in 

ECs on stiffer substrates. We have previously shown that neutrophil transmigration 

through TNF-α-activated endothelium is mediated by MLCK-dependent contractile 

forces in ECs (Chapter 7). Specifically, neutrophil adherence to the endothelium initiates 

a signaling cascade that activates MLCK, leading to EC contraction and possibly 

intercellular gap formation. Stiff substrates support these contractile forces, while soft 

substrates suppress them (Chapter 7). To determine whether MLCK-mediated EC 

contraction also plays a role in neutrophil transmigration through oxLDL-treated 

endothelium, we inhibited MLCK in ECs and observed transmigration and EC hole 

formation. Transmigration was reduced down to about 10% on all substrates, and the 

dependence on substrate stiffness was eliminated (Figure 8.5). Because transmigration 
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was higher on stiffer substrates (5 kPa and 280 kPa) with oxLDL treatment alone (Figure 

8.1B), MLCK inhibition affected transmigration on stiff substrates to a higher degree 

than soft substrates (0.87 kPa). These results indicate higher contractility in HUVECs on 

stiff substrates after oxLDL treatment and possibly after neutrophil binding to ICAM-1, 

and this contractility promoted neutrophil transmigration. Meanwhile, MLCK inhibition 

also prevented hole formation on stiff substrates, signifying the importance of EC 

contractility in hole formation. Thus, we conclude that the substrate stiffness-dependent 

neutrophil transmigration and EC injury were due to MLCK-mediated contractile forces. 

We have previously shown that neutrophil transmigration leads to formation of 

large holes (on the order of thousands of square microns) in TNF-α-activated 

endothelium on stiff substrates 5 kPa and above (Figure 7.9). Interestingly, 

transmigration of many different types of metastatic tumor cells also leads to hole 

formation in the endothelium [219]. Here, we observed similar injury after neutrophil 

transmigration through oxLDL-treated ECs, where hole size and density increased with 

increasing substrate stiffness (Figure 8.3). We have previously characterized the kinetics 

of hole formation in relation to neutrophil transmigration through TNF-α-activated ECs, 

showing that hole formation initiates a few minutes after a maximum fraction of 

neutrophils has transmigrated (Figure 7.11). However, for the case of TNF-α-treated ECs, 

the endothelium was mostly able to reseal the holes by 2 hours after plating neutrophils. 

Here, with oxLDL treatment, the injury was actually more severe, as the endothelium did 

not reseal the holes by 2 hours (Figures 8.3A and 8.3B), even though the fraction of 

neutrophil transmigration was significantly reduced in comparison with TNF-α. For 

example, on the 5 kPa substrate, 54% of neutrophils transmigrated through oxLDL-
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treated HUVECs (Figure 8.1B) versus 94% through TNF-α-activated HUVECs (Figure 

7.1B). The histograms of hole size in Figures 8.3C and 8.3D indicate one of two 

possibilities at 2 hours: either about half of the smaller holes actually became larger, or 

that the smaller holes healed, while more larger holes formed. For both oxLDL and TNF-

α treatments, holes are likely due to proteases released by neutrophils either during 

transmigration or after transmigration, as they migrate between the endothelium and the 

gel. These proteases could cleave endothelial cell-cell and/or cell-substrate adhesions, 

and larger EC contractile forces on stiffer substrates could promote retraction as proteases 

act on them, leading to large holes. Also, neutrophil transmigration and subsequent 

migration beneath the monolayer could weaken endothelial cell-cell and/or cell-substrate 

adhesions. If this type of injury also occurs in vivo due to the presence of oxLDL, 

transmigration through the endothelium in stiffened vasculature could add another layer 

of complication to the molecular and cellular events in cardiovascular disease. 

 

8.5 Conclusions 

In summary, we showed that 24-hour oxLDL treatment of the vascular 

endothelium promoted neutrophil transmigration, with stiff EC substrates further 

promoting transmigration. ICAM-1 expression was enhanced on all substrates after 24-

hour oxLDL treatment, an effect that accounted for the promotion of transmigration in 

comparison with the untreated controls. Meanwhile, 1-hour oxLDL treatment did not lead 

to neutrophil transmigration, even though contractility was enhanced at this point. In 

addition, large holes formed in the monolayers on stiff substrates following neutrophil 

transmigration and were further indicators of enhanced contractile forces in ECs on stiff 
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substrates. Using an inhibitor of MLCK in oxLDL-treated ECs, we showed that MLCK-

mediated EC contractility was responsible for the dependence of substrate stiffness on 

transmigration and hole formation in the monolayers. Thus, it is clearly an interplay 

between ICAM-1 and MLCK-dependent contractile forces which mediate neutrophil 

transmigration through oxLDL-treated endothelium. Stiff substrates and enhanced 

ICAM-1 after oxLDL treatment together maximally promote transmigration. These 

results indicate that microvasculature stiffness, which likely varies depending on tissue 

location and health, is an important regulator of the immune response in the presence of 

oxLDL. These results also suggest that the effects of EC exposure to oxLDL during the 

onset of atherosclerosis depend on the biomechanical changes that take place in 

vasculature as the disease develops. 
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9 Summary and Conclusions 

Leukocyte transmigration plays a pivotal role both in the normal immune 

response and also in the development of cardiovascular disease, including atherosclerosis 

and stroke. A vast amount of work has been dedicated to biological aspects of 

transmigration, including cytokine exposure, junctional protein organization in the 

endothelium, and signaling pathways. However, even though cardiovascular disease is 

associated with vascular stiffening, the biomechanical properties of the subendothelial 

matrix have, until this point, been largely ignored with respect to the immune response. 

Here, we investigated important aspects of EC biomechanics, leukocyte mechanosensing, 

and EC contraction-mediated neutrophil transmigration using an in vitro model of the 

vascular endothelium that takes into account the flexibility of the matrix below the 

endothelium.  

 

9.1 Cell-cell adhesion and TNF-α affect EC biomechanics 

We first evaluated the effects of two key components of our in vitro model, cell-

cell adhesion and TNF-α exposure, on EC biomechanical properties. Biological processes 

such as atherogenesis, wound healing, cancer cell metastasis, and immune cell 

transmigration rely on a delicate balance between cell-cell and cell-substrate adhesion; 

however, the effects of cell-cell interactions on the mechanical properties of cells have 

received little attention. Here, we used atomic force microscopy (AFM) to measure the 

Young’s modulus of live ECs. In varying the degree of cell-cell contact in ECs (single 

cells, groups, and monolayers), we observed that increased cell stiffness correlated with 

an increase in cell area. Further, we observed that ECs stiffened as they spread onto a 
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substrate. When we weakened cell-cell junctions, we observed that cell-substrate 

adhesion increased, and the stiffness of cells within the monolayer approached that of 

single cells. Our results suggest that while morphology can roughly be used to predict 

cell stiffness, cell-cell interactions play a significant role in determining the mechanical 

properties of individual cells in tissues by careful maintenance of cell tension 

homeostasis. 

The immune response triggers a complicated sequence of events, one of which is 

release of the cytokine TNF-α from stromal cells such as monocytes and ECs. TNF-α 

binds to the surface of the endothelium, initiating a biological signaling cascade that leads 

to drastic changes in junctional protein organization, adhesion molecule expression, and 

permeability. Here we explored other less-studied effects of TNF-α on ECs, including 

cell morphology, biomechanics, migration, and cytoskeletal dynamics. We found that 

TNF-α induced a wide distribution of cell area and aspect ratio, with these properties 

increasing on average. Meanwhile, ECs treated with TNF-α softened, and we associated 

this with significant increases in estimated cellular volume. In addition, our evaluation of 

migratory dynamics demonstrated an inverse correlation between cell aspect ratio and 

migration speed after TNF-α treatment, suggesting that cell shape may be an important 

functional regulator of EC migration during an inflammatory response. Finally, we 

addressed the basic mechanics of how the reorganization of F-actin filaments occurs 

during TNF-α treatment, and we demonstrated a dynamic shift of existing actin filaments. 

Together, these results suggest a functional link between EC morphology, biomechanics, 

migration, and cytoskeletal dynamics during an inflammatory response. 

 



www.manaraa.com

  201 

9.2 Neutrophils are mechanosensitive 

Knowing that a variety of factors can influence EC biomechanical properties, we 

next explored whether neutrophils are mechanosensitive – that is, whether they are 

capable of detecting changes in substrate stiffness and using that information to direct 

their behavior. Thus, we investigated the effects of substrate stiffness on neutrophil 

morphology and motility parameters such as random motility coefficient, speed, and 

distribution of turning angles of neutrophils during chemokinesis. Human neutrophils 

were plated onto fibronectin-coated polyacrylamide gels of varying stiffness and 

timelapse images were taken with phase contrast microscopy. Our results showed a 

biphasic behavior between neutrophil motility and substrate stiffness, with the optimum 

stiffness for motility depending on the concentration of fibronectin on the surface of the 

gel. This biphasic behavior most likely arises because neutrophils on soft gels are less 

adherent, preventing production of traction forces, while neutrophils on stiff gels adhere 

strongly, resulting in decreased migration. At intermediate stiffness, however, neutrophils 

can attain optimal motility as a function of extracellular matrix coating. Thus, we 

demonstrated that neutrophils are indeed mechanosensitive, suggesting that 

biomechanical changes which occur in vascular could influence the immune response. 

Therefore, our next step was to evaluate the effects of EC biomechanics and 

subendothelial matrix stiffness on neutrophil transmigration.  

 

9.3 Subendothelial matrix stiffness directs the immune response 

In a novel in vitro model, we mimicked blood vessels of varying mechanical 

properties using fibronectin-coated polyacrylamide gels of varying physiological 
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stiffness, plated with human EC monolayers that were activated with TNF-α or oxLDL. 

Interestingly, neutrophil transmigration increased with increasing substrate stiffness 

below the endothelium. We hypothesized that some sort of biophysical change in the 

endothelium produced this result, and thus we evaluated the effects of substrate stiffness 

on an array of EC (and neutrophil) properties (Figure 9.1).  EC intercellular adhesion 

molecule-1 expression, stiffness, cytoskeletal arrangement, morphology, and cell-

substrate adhesion could not account for the dependence of transmigration on EC 

substrate stiffness. We also explored the role of cell contraction and observed that large 

holes formed in endothelium on stiff substrates several minutes after neutrophil 

transmigration reached a maximum. Interestingly, for ECs treated with TNF-α, these 

holes healed after two hours of adding neutrophils, while holes in ECs treated with 

oxLDL did not heal within that time, indicating that transmigration through the 

endothelium in stiffened vasculature could add another layer of complication to the 

molecular and cellular events in cardiovascular disease. Further, suppression of 

contraction through inhibition of MLCK eliminated the effects of substrate stiffness by 

reducing transmigration and preventing hole formation in ECs on stiff substrates. These 

results provide strong evidence that neutrophil transmigration is regulated by MLCK-

mediated endothelial cell contraction and that this event depends on subendothelial 

matrix stiffness. Thus, not only did we identify the relationship between subendothelial 

matrix stiffness and transmigration, but we also discovered the molecular mechanism 

responsible for that relationship. 
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Figure 9.1. Summary of the biophysical properties of the endothelium and neutrophils which 
could have accounted for the subendothelial matrix stiffness-dependent neutrophil transmigration 
behavior.  
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9.4 Concluding remarks 

Our results suggest that neutrophil transmigration varies with blood vessel 

mechanical properties, depending on health, tissue type, and size. Thus microvasculature 

stiffness, which likely varies depending on tissue type and health, is likely an important 

regulator of the immune response in the presence of either TNF-α or oxLDL. These 

results may be associated with cardiovascular disease biology, where increased vascular 

stiffness is coupled with increased leukocyte transmigration. These results also suggest 

that the biomechanical changes that take place in vasculature as cardiovascular disease 

develops could be exacerbating the situation. Finally, this work may also be relevant to 

cancer cell metastasis or stem cell homing, both which involve cell transmigration across 

the endothelium. 
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10 Future Work and Outlook 

 The work in this dissertation has motivated the start of many additional projects, 

all which will contribute to a more comprehensive understanding of the biophysical 

aspects of vasculature and the immune response. For example, this dissertation has only 

focused on one type of immune cell (neutrophils), and now we are using the in vitro 

model developed in this dissertation to study both monocyte and metastatic cancer cell 

transmigration. Shear stress could be added as an additional component of the model 

using either a parallel plate flow chamber or microfluidics, since this dissertation 

approximated the low shear stresses experienced in microvasculature by using static 

conditions. In addition, further experiments could identify the role of EC contractility in 

directing paracellular versus transcellular transmigration. Below we outline several 

projects that are motivated by the results presented in this dissertation. 

 

10.1 Paracellular versus transcellular transmigration 

 As discussed in Section 2.9, leukocyte transmigration can occur via one of two 

pathways: (1) the paracellular route (through cell-cell junctions), or (2) the transcellular 

route (through the body of the EC). In Chapter 7, we combined our in vitro model for 

transmigration with transfection of ECs using an adenovirus for GFP-VE-cadherin in 

order to label cell-cell junctions. Though we observed mostly paracellular transmigration, 

others have observed robust transcellular transmigration both in vivo and in vitro. In the 

future, it would be useful to identify key factors that promote transcellular transmigration 

and also to determine whether EC contraction plays a role in transcellular transmigration. 

For example, if there exists a model where the transcellular pathway comprises a 
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significant percentage of total transmigration, perhaps inhibition of MLCK reduces 

paracellular transmigration and increases the frequency of transcellular transmigration 

due to a decrease in intercellular gap formation. Subendothelial matrix stiffness could 

also play a role in determining how MLCK inhibition affects paracellular versus 

transcellular transmigration.  

 It would also be useful to study EC actin dynamics during transcellular 

transmigration. Currently, it is not well understood how leukocytes transmigrate via this 

pathway, nor is it known how the EC cytoskeleton rearranges to accommodate 

transmigration. Though, if a leukocyte passes through the body of an EC, it is obvious 

that the EC stress fibers must be affected in some way. Our preliminary data indicates 

that large holes form in the actin cytoskeleton due to initiation of neutrophil transcellular 

transmigration (Figures 10.1 and 10.2), which could indicate that actin is being 

depolymerized during this process, or that the actin is being physically pushed down or to 

the side by the neutrophil. Confocal microscopy could be used to explore this process. If 

actin depolymerization is the explanation, then further experiments could identify the 

specific molecular and physical contributions of ECs and neutrophils that result in such 

dramatic reorganization of the EC actin cytoskeleton. 

____________________ 

 
Figure 10.1. Initiation of neutrophil transmigration (red arrow) leads to formation of a large hole 
in the F-actin cytoskeleton (green, left) of a HUVEC. A phase contrast image is also shown at the 
right, for the timepoint (T=9:40) when the hole begins to form. The neutrophil of interest is 
indicated by the red arrow in the phase contrast image, while the red outline in the GFP-actin 
image at T=9:40 corresponds to the outline of that neutrophil. Protrusions extending from the 
neutrophil in the phase contrast image indicate that transmigration has initiated. Scale bar on 
phase contrast image is 20 µm and also applies to all GFP-actin images. Times shown are in 
minutes:seconds format, where T=0 is the time when neutrophils were plated onto the 
endothelium. 
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Figure 10.2. Neutrophil leaves a large hole in EC F-actin after transmigration. Cells were fixed at 
at 10 minutes after adding neutrophils to the endothelium. Cells were stained for F-actin (red) and 
DNA (blue). Neutrophils and ECs can easily be distinguished by the size and shape of the nucleus 
(bottom left image). A large hole in the EC stress fibers can be seen in the lower right image, with 
the disorganized, brighter actin of the neutrophil just next to it. Scale bar is 20 µm. 
 

____________________ 

 
10.2 Role of neutrophil cytoskeleton during transmigration 

In this dissertation we showed that the physical state of the endothelium plays a 

significant role in neutrophil transmigration. Though, the biophysical properties of 

neutrophils are also important contributors to this complex process. For example, in 

Figure 7.12, we displayed that MLCK-mediated contraction in neutrophils also 

contributes to the ability of neutrophils to transmigrate. Given these results, it would also 

be interesting to evaluate which components of the cellular cytoskeleton are necessary for 

transmigration. We treated the neutrophils with latrunculin-A, an actin-disrupting drug 

that binds actin monomers, preventing polymerization. With this treatment, neutrophils 
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were not able to migrate along or transmigrate through the monolayer, indicating that 

actin polymerization is a crucial factor for transmigration.  

In addition to actin, microtubules are key regulators of neutrophil polarity during 

migration [239], though their potential role in transmigration has not yet been studied. 

Our preliminary experiments have shown that treating neutrophils with taxol, a 

mictrobule filament-stabilizing drug, results in a significantly reduced fraction of 

transmigration. Thus, microtubule dynamics do seem to play a role in transmigration. 

Treatment of neutrophils with nocodazole, a microtubule polymerization-disrupting drug, 

will be the target of future experiments. In addition to determining the effects of these 

drugs on how many neutrophils transmigrate, we will also evaluate whether the time to 

complete transmigration is different when microtubules are either stabilized or 

depolymerized. Thus, future work will identify specific proteins comprising the 

mechanical machinery in neutrophils that allow these cells to physically exert force as 

they push their way through the endothelial barrier. It will also be important to consider 

how cytoskeletal dynamics and cell contractile forces may act in concert to direct 

transmigration.  

 

10.3 Measurement of traction forces during transmigration 

 An important next step in this work will be to actually quantify the traction forces 

exerted by endothelial cells during transmigration, as a function of subendothelial matrix 

stiffness. Traction force microscopy has become a popular tool to make such 

measurements, as fluorescent marker beads can be embedded in the polyacrylamide gels 

and displacements of these beads can be used to measure forces exerted dynamically by 
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cells. Mathematically, computation of forces exerted by single cells is relatively easy and 

common in today’s research, in comparison with forces of monolayers, which are much 

more complicated. Recently, a method for measuring forces in islands of ECs (mini-

monolayers, or groups of 10-15 cells) has been established using micropatterning 

techniques, and used to show that traction forces in groups of ECs increase as 

subendothelial matrix stiffness increases [238]. We are in contact with this group and 

plan to collaborate with them to measure EC traction force generation during neutrophil 

transmigration as a function of subendothelial matrix stiffness. Using their methods, it 

will also be possible to calculate intercellular stresses (cell-cell forces) in addition to 

traction stresses (cell-substrate forces) as a function of substrate stiffness. 

 

10.4 Analysis of neutrophil “hotspots” 

  Interestingly, in our results, neutrophil migration through the endothelium on stiff 

substrates (approximately 5 kPa and above) occurs at specific “hotspots” in the 

monolayer, where one neutrophil transmigrates through the endothelium, and many 

neutrophils subsequently follow through the same hole. Recently, similar results have 

been shown for monocytes, and the authors of this study attribute what we call 

transmigratory “hotspots” to transmigration-induced junctional molecule rearrangement 

(specifically, increased PECAM-1 and decreased VE-cadherin), which increases EC 

permeability and places the endothelium in a more “leukocyte-leaky” state [240]. 

Another reasonable hypothesis is that the leukocytes release chemoattractant molecules 

as they transmigrate, which attract other leukocytes to the area. Alternatively, the 

distribution of adhesion molecules along the endothelium could be heterogeneous, and 
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leukocytes could simply be collectively choosing to transmigrate at the most favorable 

spots. However, in our work, this same “hotspot” phenomenon is not seen on softer 

substrates below 5 kPa, suggesting that the cell mechanics are involved. For example, 

perhaps the enhanced EC contractility on stiffer substrates actually varies locally, and 

leukocytes choose to exploit this feature, resulting in many leukocytes transmigrating in 

the same location. Further experiments could test the relative contribution of cell 

mechanics, adhesion molecule distribution, and chemoattractant release to transmigration 

via “hotspots” on stiff substrates. 

 

10.5 Neutrophil migration below the endothelium 

 In Figure 7.18 we showed that neutrophil migration above the endothelium does 

depend on the stiffness of the substrate below the endothelium. This makes sense, since 

the ICAM-1 presentation was the same, while the stiffness of the ECs was not different 

enough for the neutrophils to detect. However, an interesting question is what happens 

once the neutrophils transmigrate and begin migrating below the endothelium. At that 

point, they are in direct contact with the substrate, so it could be hypothesized that their 

migration in that situation would be more similar to neutrophils on bare gels (without 

ECs), as in Chapter 6. However, we must also take into account the presence of the ECs 

above the neutrophils; in this case, it is actually a quasi-3D situation.  

 Interestingly, neutrophil morphology below the monolayer is quite different from 

the morphology above the monolayer (Figure 10.3). Above the monolayer, neutrophils 

appear bright white and mostly rounded in phase contrast microscopy, while below the 

monolayer they darken and take on a protrusive, spindly-like morphology. We 
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hypothesize that this change in morphology occurs due to the EC-substrate adhesions, 

which prevent the neutrophils from spreading out completely in an isotropic fashion. This 

could be tested by transfecting the ECs for GFP-vinculin and observing EC focal 

adhesion dynamics in relation to neutrophil migration below the monolayer. 

 As neutrophils migrate below the endothelium, they are presented with the 

stiffness of the substrate below them, as well as the stiffness of the ECs above them. 

Another experiment using a sandwich of polyacrylamide gels could test the response of 

neutrophils to two different stiffnesses (one above them and one below them). It would 

be interesting to determine whether the top surface or bottom surface is more responsible 

for directing neutrophil morphology and migration dynamics. 

____________________ 

 

Figure 10.3. Characteristic migration along and below the endothelium. Shown is a phase 
contrast time sequence of a neutrophil transmigrating through a HUVEC monolayer. The time 
after plating (T) is shown in minutes and the scale bar is 20 µm. The orange arrows follow the 
cell of interest from frame to frame. Transmigration is indicated by the change in phase, from the 
bright white cell on top of the HUVECs, to the darkened spread-out cell underneath the 
HUVECs. In this case, the HUVECs are plated on top of a 5 kPa polyacrylamide gel. 
Transmigration begins at T=3.25 and by T=4.75 the neutrophil has completely transmigrated and 
begins migrating between the HUVECs and the gel. In the last four frames, it is evident that the 
neutrophil migrates with a very different morphology under the HUVECs than it does on top of 
the HUVECs. Once underneath, it sends out long, thin spindly protrusions, possibly in order to 
migrate around strong adhesions between the HUVECs and the gel substrate. 
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10.6 Metastatic cancer cell transmigration 

 The process of cancer metastasis also involves some form of cell transmigration 

through the endothelial barrier. During metastasis, cancer cells break away from the 

primary tumor site, intravasate into the bloodstream, circulate in the bloodstream, 

extravasate through the endothelium and out of the vasculature, and invade a tissue 

distant from the primary tumor location. Metastatic cancers are usually much harder to 

treat, as the disease is no longer localized to a single tumor in a particular tissue. Thus, it 

would be useful to either (a) prevent cancer cells from detaching from the primary tumor 

site in the first place, or (b) inhibit their ability to enter or exit the bloodstream. The 

methods developed in this dissertation have the potential to address the latter situation.  

 We plated HBMECs (also used as model of microvasculature endothelium in 

Chapter 7) onto fibronectin-coated glass dishes or soft polyacrylamide gels and allowed 

them to form a confluent monolayer. Then, we added metastatic breast cancer cells 

(MDA-MB-231 cell line) onto the endothelium, and captured timelapse images over 24 

hours as the cancer cells interacted with the endothelium. We expected to observe 

transmigration events similar to neutrophils, where the invading cells squeezed between 

or through the endothelium; however, instead the cancer cells became incorporated into 

the monolayer.  These preliminary data suggest that cancer cell transmigration may 

involve a two-step process, whereby metastatic cancer cells first incorporate into the 

endothelium, and then migrate under the monolayer. If this is true, then the mechanism of 

cancer cell extravasation is actually quite different from immune cells; this result could 

have significant impact on the cancer field. 
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10.7 Collagen gel assays 

 In our in vitro model, we specifically chose to use polyacrylamide gels due to the 

ability to manipulate their mechanical properties independent of protein presentation. 

However, in doing this, we also prevented the neutrophils from completing the next step 

of transmigration, which is invasion of the basement membrane and subsequent layers of 

the blood vessel. It would be interesting to use a collagen gel in place of the 

polyacrylamide gel and evaluate hole formation in the endothelium. Perhaps, for 

example, if the neutrophils can invade the collagen gel after they transmigrate through the 

endothelium, then there will be less hole formation, due to (1) less neutrophil migration 

directly below the ECs, and (2) proteases acting on the collagen gel rather than the 

endothelial cell-cell junctions or cell-substrate adhesions. It would also be interesting to 

load the collagen gels with bacteria, setting up a chemoattractant gradient. Then, the 

activation state of the endothelium could be measured by evaluating ICAM-1 expression, 

and neutrophil transmigration could be analyzed. Using this model, the role of smooth 

muscle cells could be included, as they could be incorporated into the collagen gel. 

 

10.8 Mathematical modeling and simulations of transmigration 

 Because neutrophil transmigration is such a complicated biophysical process, it 

may be possible to model it mathematically, or develop simulations to describe it. This is 

an area that has not at all been explored by anyone to date. For example, to develop a 

mathematical model of transmigration, we could relate the rate of transmigration to the 

forces of actin polymerization and neutrophil contractile forces. This type of model 
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would take into account the biophysical properties of the neutrophils; however, more 

complex models could also take into account the EC intercellular forces. 

We could also use computer simulations to explore how the number and 

distribution of possible “hotspots” for transmigration affects the fraction of cells that 

transmigrate. These hotspots would represent the places in the endothelium conducive for 

transmigration (e.g. places where ECs contract to form intercellular gaps). Specifically, 

we could address the question of whether increased transmigration on stiff substrates is 

due to there being more hotspots versus larger hotspots on those substrates. To do this, 

we could first define a certain number of hotspots (N) and their location (it would be 

easiest to assume a random distribution).  We could also define the size (D) of the hotspot 

(~100 nm is the size of hole in the endothelium known to be created by neutrophils as 

they transmigrate). Then, we could set up a simulation of a particle’s random motility, 

assigning a diffusion coefficient based on known experimental motility parameters. If the 

particle moves into the space occupied by a hole, it counts as transmigration. A defined 

number of particles (P) could be introduced into the simulation and allowed to migrate 

randomly for a defined amount of time (30 minutes, as in our experimental assays). Then, 

N and D could be varied systematically in the simulations to evaluate the relative 

contributions of hotspot number and size to transmigration. 

 

10.9 Outlook 

 Our work displays the importance of taking into account blood vessel stiffness in 

in vitro models for transmigration; systems using glass or plastic substrates can no longer 

be considered physiologically relevant. In this dissertation we discover important links 
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between the biophysical state of the endothelium and the transmigration step of the 

immune response. This aspect of transmigration had not yet been studied, and the field 

will benefit from further exploration of the mechanical properties of both the endothelium 

itself and subendothelial matrix stiffness. 
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11 Appendix 

Appendix A: Matlab code for AFM force curve analysis 

Script: 
 
% Written by Kimberly M. Stroka 
 
clear all  
close all 
clc 
  
file_ext = 'HUVEC042'; % Adjust for data file name 
file_ext_base1 = '.xls'; 
file_ext_base2a = '-raw.fig'; 
file_ext_base2b = '-fit.fig'; 
file_base = 'C:\Documents and Settings\Kim Murley Stroka\My 
Documents\AFM HUVECs\070909 HUVECs on glass\monolayer 2\flexgrid 
images\'; % Adjust for data folder name 
output_base = 'C:\Documents and Settings\Kim Murley Stroka\My 
Documents\AFM HUVECs\test\'; % Adjust output folder 
file_name = [file_base, file_ext, file_ext_base1]; 
output_file = [output_base, file_ext, file_ext_base1]; 
fig_file1 = [output_base, file_ext, file_ext_base2a]; 
fig_file2 = [output_base, file_ext, file_ext_base2b]; 
 
% The following command calls the “Function” below. 
AFM_102709_flexgrid(file_name, output_file, fig_file1, fig_file2) 
 
 
Function: 
 
function[] = AFM_102709_flexgrid(file_name, output_file, fig_file1, 
fig_file2) 
  
% Written by Kimberly M. Stroka 
 
% ------Preparation of data files: 
 
% For 2000 data points, imports Excel files 
% Need to change *.ivs (PicoScan) or *.mi (Picoview) files to *.txt in 
% DOS command prompt. Then need to open each file in Excel and save as 
% Excel file instead of text delimited. 
  
% Be sure to enter deflection sensitivity (volt_conv - Line 24), spring 
% constant of the cantilever (Line 211), radius of curvature of 
cantilever (Line 211), and Poisson ratio (Line 211) into program. 
  
% In Figure 1, magenta dot indicates end of "cut" data. Green dots  
% indicate region of data which is being fit in Figure 2. 
% In Figure 2, data points are blue, while red line is the Hertz- 
% Sneddon fit. 
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% -----Parameters to adjust prior to running program: 
 
volt_conv =1;   %nm/V conversion (enter 1 if data already converted) 
  
% -----Parameters to be adjusted if fit is not good 
 
cut =200;       % Cuts several of the first data points in case data is 
% very noisy in the beginning 
beg_slope = -0.08;     % This defines the slope where the program will 
% begin fitting the data. The data prior to this will be cut. 
t = 50;         % This defines the number of data points to be fit 
  
% -----Read in and preprocess data 
 
Youngs_mod = []; 
R_squared = []; 
name = {}; 
  
figure(2) 
f_ = clf; 
figure(f_); 
  
for m =0:24 
      
    if m == 0 
        cellsA = 'A108:A2107'; 
        cellsB = 'B108:B2107'; 
    end 
    if m == 1 
        cellsA = 'A2119:A4118'; 
        cellsB = 'B2119:B4118'; 
    end 
    if m == 2 
        cellsA = 'A4130:A6129'; 
        cellsB = 'B4130:B6129'; 
    end 
    if m == 3 
        cellsA = 'A6141:A8140'; 
        cellsB = 'B6141:B8140'; 
    end 
    if m == 4  
        cellsA = 'A8152:A10151'; 
        cellsB = 'B8152:B10151'; 
    end 
    if m == 5 
        cellsA = 'A10163:A12162'; 
        cellsB = 'B10163:B12162'; 
    end 
    if m == 6 
        cellsA = 'A12174:A14173'; 
        cellsB = 'B12174:B14173'; 
    end 
    if m == 7  
        cellsA = 'A14185:A16184'; 
        cellsB = 'B14185:B16184'; 
    end 
    if m == 8 
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        cellsA = 'A16196:A18195'; 
        cellsB = 'B16196:B18195'; 
    end 
    if m == 9 
        cellsA = 'A18207:A20206'; 
        cellsB = 'B18207:B20206'; 
    end 
    if m == 10 
        cellsA = 'A20218:A22217'; 
        cellsB = 'B20218:B22217'; 
    end 
    if m == 11 
        cellsA = 'A22229:A24228'; 
        cellsB = 'B22229:B24228'; 
    end 
    if m == 12 
        cellsA = 'A24240..A26239'; 
        cellsB = 'B24240..B26239'; 
    end 
    if m == 13 
        cellsA = 'A26251:A28250'; 
        cellsB = 'B26251:B28250'; 
    end 
    if m == 14 
        cellsA = 'A28262:A30261'; 
        cellsB = 'B28262:B30261'; 
    end 
    if m == 15 
        cellsA = 'A30273:A32272'; 
        cellsB = 'B30273:B32272'; 
    end 
    if m == 16 
        cellsA = 'A32284:A34283'; 
        cellsB = 'B32284:B34283'; 
    end 
    if m == 17 
        cellsA = 'A34295:A36294'; 
        cellsB = 'B34295:B36294'; 
    end 
    if m == 18 
        cellsA = 'A36306:A38305'; 
        cellsB = 'B36306:B38305'; 
    end 
    if m == 19 
        cellsA = 'A38317:A40316'; 
        cellsB = 'B38317:B40316'; 
    end 
    if m == 20 
        cellsA = 'A40328:A42327'; 
        cellsB = 'B40328:B42327'; 
    end 
    if m == 21 
        cellsA = 'A42339:A44338'; 
        cellsB = 'B42339:B44338'; 
    end 
    if m == 22 
        cellsA = 'A44350:A46349'; 
        cellsB = 'B44350:B46349'; 
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    end 
    if m == 23 
        cellsA = 'A46361:A48360'; 
        cellsB = 'B46361:B48360'; 
    end 
    if m == 24 
        cellsA = 'A48372:A50371'; 
        cellsB = 'B48372:B50371'; 
    end 
    
     
%d = x-axis = distance from sample (nm) 
%z = y-axis = deflection of cantilever (nm) 
d = XLSREAD(file_name,1, cellsA); 
z = XLSREAD(file_name,1, cellsB)*volt_conv; 
  
figure(1); subplot(5,5,m+1) 
plot(d(1:1000),z(1:1000)) 
hold on 
  
%-----Cut out first several points, # defined by "cut" 
d2 = [d(cut:end)]; 
z2 = [z(cut:end)]; 
  
%-----Calculate derivative of raw data 
 
dzdd = []; 
for n = 2:length(d2) 
    x = [(z2(n)-z2(n-1))/(d2(n)-d2(n-1))]; 
    dzdd = [dzdd;x]; 
end 
  
%-----Check slope of each point with the point 10 points ahead 
 
dzdd2 = []; 
for n = 2:length(d2)-50 
    x10 = [(z2(n+9)-z2(n-1))/(d2(n+9)-d2(n-1))]; 
    dzdd2 = [dzdd2;x10]; 
end 
  
%-----Substract out z_o and d_o and cut out unwanted data at beginning 
 
q = 1; 
g = 1; 
while (q==g) 
    g = g + 1; 
   if dzdd2(g)>beg_slope  
       d3 = [d2(g:end)]; 
       z3 = [z2(g:end)]; 
       q = q + 1; 
   end 
end 
  
d4 = [d3]-d3(1); 
z4 = [z3]-z3(1); 
dzdd = [dzdd(q:end)]; 
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start_pt = cut+g; 
end_pt = start_pt+t; 
figure(1) 
plot(d(cut),z(cut),'mo','MarkerFaceColor','m','MarkerSize',2) 
plot(d(start_pt),z(start_pt),'go','MarkerFaceColor','g','MarkerSize',2) 
plot(d(end_pt),z(end_pt),'go','MarkerFaceColor','g','MarkerSize',2) 
  
%-----Cut out unwanted data at end 
 
d5 = [d4(1:t)]; 
z5 = [z4(1:t)]; 
  
%-----Reflect around y-axis; convert to meters 
 
d6 = -[d5].*10^-9; 
z6 = [z5].*10^-9; 
     
%----------------Fit to Sneddon-Hertz Model for spherical probe 
    
%-----Create fit  
  
ft_ = fittype({'(((((((4/(3*0.008))*(1/(1-0.45^2))*((2.5*10^-
6)^(1/2))*x^(3/2))))) ))'} ,... 
     'dependent',{'y'},'independent',{'x'},'coefficients',{'E'}); 
  
%-----Fits this model using new data 
 
[cf_, good] = fit(d6,z6,ft_ ); 
  
%-----Set up figure to receive datasets and fits 
 
figure(2) 
legh_ = []; legt_ = {};   % handles and text for legend 
xlim_ = [Inf -Inf];       % limits of x axis 
ax_ = subplot(5,5,m+1); 
%ax_ = subplot(1,1,1); 
set(ax_,'Box','on'); 
axes(ax_); hold on; 
  
%-----Plot data originally in dataset "z6 vs. d6" 
 
d6 = d6(:); 
z6 = z6(:); 
  
if m==2 
    d_periph=d6; 
    z_periph=z6; 
end 
  
if m==15 
    d_top=d6; 
    z_top=z6; 
end 
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h_ = line(d6,z6,'Parent',ax_,'Color',[0.333333 0 0.666667],... 
     'LineStyle','none', 'LineWidth',1,... 
     'Marker','.', 'MarkerSize',12); 
xlim_(1) = min(xlim_(1),min(d6)); 
xlim_(2) = max(xlim_(2),max(d6)); 
legh_(end+1) = h_; 
legt_{end+1} = 'Data'; 
  
  
%-----Nudge axis limits beyond data limits 
 
if all(isfinite(xlim_)) 
   xlim_ = xlim_ + [-1 1] * 0.01 * diff(xlim_); 
   set(ax_,'XLim',xlim_) 
end 
  
%-----Plot the fit and save results 
 
h_ = plot(cf_,'fit',0.95); 
legend off;  % turn off legend from plot method call 
set(h_(1),'Color',[1 0 0],'LineStyle','-', 'LineWidth',2,'Marker', 
'none', 'MarkerSize',6); 
legh_(end+1) = h_(1); 
legt_{end+1} = 'Hertz model fit'; 
  
hold off; 
legend(ax_,legh_, legt_);    
xlabel('Distance (m)'); ylabel('Deflection (m)') 
legend off; 
%axis([0,5*10^-7,0,10*10^-7]); 
Youngs_mod(m+1) = cf_.E; 
R_squared(m+1) = good.rsquare; 
Force(m+1) = z3(1); % Force initially applied (not yet multiplied by k) 
  
end 
  
Youngs_mod' 
R_squared' 
  
nameX = {'A'; 'B'; 'C'; 'D'; 'E'; 'F'; 'G'; 'H'; 'I'; 'J'; 'K'; 'L'; 
'M'; 'N'; 'O'; 'P'; 'Q'; 'R'; 'S'; 'T'; 'U'; 'V'; 'W'; 'X'; 'Y'};  
  
file_nameX = {file_name}; 
summary1 = {'Young"s modulus (Pa)', 'R-squared', 'Force (nm)/k'}; 
summary2 = [Youngs_mod.', R_squared.', Force.']; 
  
xlswrite(output_file, file_nameX, 1, 'A1'); 
xlswrite(output_file, nameX, 1, 'A3'); 
xlswrite(output_file, summary1, 1, 'B2'); 
xlswrite(output_file, summary2, 1, 'B3'); 
  
F1 = figure(1); 
F2 = figure(2); 
  
saveas(F1, fig_file1); 
saveas(F2, fig_file2); 
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Appendix B: Matlab code for neutrophil migration analysis 

% Written by Kimberly M. Stroka 
% Adjust parameters in first section 
  
clc 
close all 
clear all 
  
%-----Set the following parameters before beginning: 
  
end_time = 1800;             % seconds; total time of timelapse 
time_step = 10;              % seconds; time between images 
MSD_start_time = time_step;  % seconds; start time to use for MSD  
% calculation; should be multiple of time_step 
MSD_end_time = 0;            % seconds; end time to use for MSD  
% calculation,; use value of 0 to use best fit length instead of  
% specified value 
angle_bin = 100;       % number of bins to use for histogram of angles 
r2_cutoff = 0.99;      % cutoff value of correlation coefficient for  
% linear fit of MSD vs. time 
total_cells = 10;      % total number of files (1 file per cell  
% tracked) for this gel; can go up to 10 cells for this program 
scale =  1;       % number of microns per pixel (=1 if already  
% converted in ImageJ) 
scale2 = 1;            % number of microns^2 per pixel (=1 if already  
% converted in ImageJ) 
  
hist_title = {'TITLE'}; % This title will be used for all figures 
  
file_name = 'C:\Documents and Settings\Kim Murley Stroka\My 
Documents\NEUTROPHIL PROJECT\Chemokinesis Analysis\Raw Data\3 kpa 
(10ugml) - 1\'; % Adjust folder and file names below 
file1 = [file_name, 'Results1.xls']; 
file2 = [file_name, 'Results2.xls']; 
file3 = [file_name, 'Results3.xls']; 
file4 = [file_name, 'Results4.xls']; 
file5 = [file_name, 'Results5.xls']; 
file6 = [file_name, 'Results6.xls']; 
file7 = [file_name, 'Results7.xls']; 
file8 = [file_name, 'Results8.xls']; 
file9 = [file_name, 'Results9.xls']; 
file10 = [file_name, 'Results10.xls']; 
  
 
%------Begin calculating data: 
 
end_length = end_time/time_step; 
MSD_start = MSD_start_time/time_step; 
MSD_end = MSD_end_time/time_step; 
theta_all = [0]; 
  
for cell_no = 1:total_cells 
    if cell_no == 1 
        file = file1; 
    end 
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    if cell_no == 2 
        file = file2; 
    end 
    if cell_no == 3 
        file = file3; 
    end 
    if cell_no == 4 
        file = file4; 
    end 
    if cell_no == 5 
        file = file5; 
    end     
    if cell_no == 6 
        file = file6; 
    end 
    if cell_no == 7 
        file = file7; 
    end 
    if cell_no == 8 
        file = file8; 
    end 
    if cell_no == 9 
        file = file9; 
    end 
    if cell_no == 10 
        file = file10; 
    end 
  
 
% -----Read in data 
  
    x = XLSREAD(file,1,'C2:C181')*scale; 
    y = XLSREAD(file,1,'D2:D181')*scale; 
    A = XLSREAD(file,1,'B2:B181')*scale2; 
  
    x = x(1:end_length); 
    y = y(1:end_length); 
    A = A(1:end_length); 
    t = [0:length(x)-1].*time_step; 
    t2 = t(2:end); 
     
 
% -----Plot Area vs. Time 
  
    Avg_area(cell_no) = mean(A); 
    figure(1); subplot(5,2,cell_no);  
    plot(t,A,'o',t,Avg_area(cell_no),'r','MarkerSize',3);  
    title(hist_title); xlabel('Time (sec)'); ylabel('Area (um^2)');             
    axis([0,t(end),0,max(A)]); 
     
    Avg_area5(cell_no) = mean(A(1:30)); 
    Avg_area10(cell_no) = mean(A(31:60)); 
    Avg_area15(cell_no) = mean(A(61:90)); 
    Avg_area20(cell_no) = mean(A(91:120)); 
    Avg_area25(cell_no) = mean(A(121:150)); 
    Avg_area30(cell_no) = mean(A(151:end)); 
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% -----Plot Cell Trajectories 
  
    xo = x-x(1); 
    yo = y-y(1); 
     
    figure(2) 
    plot(xo,yo); title(hist_title); xlabel('x position (um)');   
    ylabel('y position (um)') 
    axis([-200,200,-200,200]); 
    hold on 
    plot(xo(end),yo(end),'or','MarkerSize',5') 
    hold on 
  
    
% -----Plot Angle vs. Time 
  
    for m = 2:(length(x)-2) 
        xx(m) = xo(m+1)-(xo(m)); 
        yy(m) = yo(m+1)-(yo(m)); 
        xx(m+1) = xo(m+2)-xo(m+1); 
        yy(m+1) = yo(m+2)-yo(m+1); 
        theta(m-1) = acos((xx(m)*xx(m+1)+yy(m)*yy(m+1))/((sqrt(xx(m)^2  

+yy(m)^2))*(sqrt(xx(m+1)^2+yy(m+1)^2)))); 
    end 
     
    theta = theta.*(180/pi); 
    theta_all = [theta_all theta]; 
    
    figure(3); subplot(5,2,cell_no) 
    plot(t2(1:end-2),theta);     
    title('Angle versus time') 
    xlabel('Time (sec)'); ylabel('Angle (deg)'); axis tight 
    figure(4) 
    subplot(5,2,cell_no);  
    hist(theta,angle_bin) 
    title(hist_title); xlabel('Angle (deg)'); ylabel('Frequency');  
    axis tight 
     
% -----Calculate and plot mean square displacement 
  
    for m = 1:length(x)-1 
        for n = 1:(length(x)-m) 
            msd(n) = (x(n+m)-x(n))^2+(y(n+m)-y(n))^2; 
        end 
        avg_msd(cell_no,m) = mean(msd); 
    end 
  
    figure(6); subplot(5,2,cell_no);      
    plot(t2,avg_msd(cell_no,:),'o','MarkerSize',3); title(hist_title);      
    xlabel('Time(sec)'); ylabel('MSD (um^2/sec)'); axis tight 
        
% ----Calculate track velocity, end-to-end distance, and contour length 
  
    for n = 1:(length(x)-1) 
        msdv(n) = (x(n+1)-x(n))^2+(y(n+1)-y(n))^2; 
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        x_step(n) = (x(n+1)-x(n)); 
        y_step(n) = (y(n+1)-y(n)); 
    end 
    sqrt_msd = msdv.^1/2; 
    v = sqrt_msd./time_step; 
    speed(cell_no) = mean(v)*60; % um/min 
    R_ee(cell_no) = sqrt((x(end)-x(1))^2+(y(end)-y(1))^2); 
    L_contour(cell_no) = sum(sqrt_msd); 
     
     
end 
  
% -----CALCULATE AVERAGE VALUES 
  
Avg_areaALL = mean(Avg_area)       % um^2 
StDev_area = std(Avg_area)         % um^2 
  
Avg_area5ALL = mean(Avg_area5) 
Avg_area10ALL = mean(Avg_area10) 
Avg_area15ALL = mean(Avg_area15) 
Avg_area20ALL = mean(Avg_area20) 
Avg_area25ALL = mean(Avg_area25) 
Avg_area30ALL = mean(Avg_area30) 
  
Avg_speed = mean(speed)             % um/min 
StDev_speed = std(speed)            % um/min 
  
Avg_R_ee = mean(R_ee)    % um 
Avg_L_contour = mean(L_contour)     % um 
  
MSD = mean(avg_msd); 
 
figure(7); subplot(2,1,1);  
plot(t2,MSD,'o','MarkerSize',3); title(hist_title);  
xlabel('Time (sec)'); ylabel('MSD (um^2)'); 
 
figure(7); subplot(2,1,2);  
plot(log(t2),log(MSD),'o','MarkerSize',3); title(hist_title); 
xlabel('log(Time)'); ylabel('log(MSD)'); 
 
figure(8);  
hist(theta_all(2:end),angle_bin); title(hist_title);  
xlabel('Angle (deg)'); ylabel('Frequency'); axis tight 
 
 
% -----Fit Linear portion of MSD vs. time to Diffusion Equation  
% -----MSD=4*D*t 
  
t2 = t2(MSD_start:end); 
MSD = MSD(MSD_start:end); 
  
if MSD_end_time == 0 
    R = corr2(t2,MSD); 
    for m = 1:length(t2) 
        if R^2<r2_cutoff 
            t2 = t2(1:end-m); 
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            MSD = MSD(1:end-m); 
            R = corr2(t2,MSD); 
        end 
    end 
else  
    t2 = t2(1:MSD_end); 
    MSD = MSD(1:length(t2)); 
end 
  
t_fine = [0:0.1:t2(end)]; 
t_fine2 = [t2(2):0.1:t2(end)]; 
a = polyfit(t2,MSD,1) 
b = polyfit(log(t2(2:end)),log(MSD(2:end)),1) 
MSD_fitted = polyval(a,t_fine); 
log_MSD_fitted = polyval(b,log(t_fine2)); 
  
lin_fit = ['Linear fit, D = slope/4 = ', num2str(a(1)/4)]; 
lin_fit2 = ['Linear fit, slope = ', num2str(b(1))]; 
  
figure(9); subplot(2,1,1); plot(t2,MSD,'o','MarkerSize',3); hold on  
figure(9); subplot(2,1,1); plot(t_fine,MSD_fitted,'r','LineWidth',2'); 
title(hist_title); xlabel('time (sec)'); ylabel('MSD (um^2)') 
legend('Simulation Data',lin_fit); axis tight 
  
figure(9); subplot(2,1,2); 
plot(log(t2(2:end)),log(MSD(2:end)),'o','MarkerSize',3); hold on  
figure(9); subplot(2,1,2); 
plot(log(t_fine2),log_MSD_fitted,'r','LineWidth',2'); 
title(hist_title); xlabel('log(time)'); ylabel('log(MSD)') 
legend('Simulation Data',lin_fit2) 
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